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> Review of linear algebra

1. Vectors
2. Matrices
3. *Tensors

*: PhD material
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Preliminaries

o We use the following standard notation in the Mathematics of Data lectures

Scalars are denoted by lowercase letters (e.g., k)

Vectors by lowercase boldface letters (e.g., x)

>

>

> Matrices by uppercase boldface letters (e.g., A)

> Component of a vector x, matrix A as x;, a;j & A; j 1, ... respectively
>

Sets by uppercase calligraphic letters (e.g., S)

o We focus on the field of real numbers (R)

o Most results here can be generalized to the field of complex numbers (C)
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Vectors

. Vector spaces
. Vector norms

Inner products

Pwonoe

Dual norms
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Vectors

Definition

A vector is an array of numbers arranged by rows or columns.
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Vector spaces

Definition

A vector space or linear space over the field R consists of

(a) a set of vectors V
(b)
(c) a scalar multiplication operation: R x V — V
(d) a distinguished element 0 € V

an addition operation: V XV — V

and satisfies the following properties:

x+y=y+x, VVx,yeEV
C(x+y)tz=x+(y+2z),Vxy,z€V
.0+x=x,VxeV

.Vx €V I (—x) € Vsuchthatx+(—x) =0
(af)x = a(Bx), Va,BER Vx€EV
axt+y)=ax+ay, Va€ER Vx,y€eV
Clx =x,Vx eV

~N O OO0 b~ WN
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commutative under addition
associative under addition

0 being additive identity

—x being additive inverse

associative under scalar multiplication
distributive

1 being multiplicative identity
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Vector spaces contd.

Example (Vector space)

1. V1 = {0} for 0 € RP
2. Vo =RP
3. V3 = Zle a;x; for a; € R and x; € RP

It is straight forward to show that V1, Vs, and V3 satisfy properties 1-7 shown before.

Definition (Subspace)

A subspace is a vector space that is a subset of another vector space.

Example (Subspace)

V1, Va2, and V3 in the example above are subspaces of RP.
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Vector spaces contd.

Definition (Span)
The span of a set of vectors, {x1,X2,...,Xg}, is the set of all possible linear combinations of these vectors; i.e.,

span {x1,x2,...,Xp} = {a1x1 + asxa + -+ + Xy | a1, 2,...,ar € R}.

Definition (Linear independence)
A set of vectors, {x1,xX2,...,Xg}, is linearly independent if

a1x) +aXg -+ aXp =0 = a1 =az=...= o =0.

Definition (Basis)

The basis of a vector space, V, is a set of vectors {x1,x2,...,Xy} that satisfy
(a) V =span {x1,x2,...,xk}, (b) {x1,x2,...,x} are linearly independent.

Definition (Dimension)

The dimension of a vector space, V, (denoted dim())) is the number of vectors in the basis of V.
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Vector norms

Definition (Vector norm)

A norm of a vector in R? is a function || - || : R — R such that for all vectors x,y € RP and scalar A € R
(a) ||x|| > 0 for all x € R? nonnegativity

(b) |Ix|l =0 if and only if x =0  definitiveness

(c) lIAx|| = |All|=]| homogeniety

(d) lx+yll < [l + [yl triangle inequality

The £4-norms

1
For x € RP, the £4-norm is defined as ||x||q := ( le \xi|q) e for ¢ € [1, o0].

Example
(1)  L2-norm:  ||x]|2 := 21;:1 z2  (Euclidean norm)
(2) Li-norm:  ||x]||1 := Zle |2 (Manhattan norm)
(3) Lloo-norm:  ||x||cc := max [z;| (Chebyshev norm)
d=1lg000000
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Vector norms contd.

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by
|Ix + vl < c(Ix|| + |lyl]) for a constant ¢ > 1.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example
> The £4-norm is in fact a quasi norm when g € (0,1), with ¢ = 21/9 — 1.

> The total variation norm (TV-norm) defined (in 1D): [|x|Tv := Zf;ll |zit1 — x;| is a semi-norm since it
fails to satisfy (b);
e.g., any x = ¢(1,1,...,1)T for ¢ # 0 will have ||x|Tv = 0 even though x # 0.

Definition (4p-“norm™)
[Ixllo = limgollx/Ig = [{i : i # 0}|

Observations: o The £p-"“norm” counts the non-zero components of x. Hence, it is not a norm.

o It does not satisfy the property (c) = it is also neither a quasi- nor a semi-norm.
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Vector norms contd.

Problem (s-sparse approximation)

Find argmin ||[x —yl||2 subject to: |[|x]jo < s.
XERP
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Vector norms contd.

Problem (s-sparse approximation)

Find argmin ||[x —yl||2 subject to: |[|x]jo < s.
XERP

Solution

Define y € argmin [x—y[2 and let S= supp (3’\)
x€ERP:||x[lo<s

We now consider an optimization over sets
~ . 9
S € argmin|lys — y/l3-
S:|S|<s

€ argmax { [lyl3 - llys - ¥I3}
S:|S|<s

€ argmax{”ys”%} = arg max E llysll> (= modular approximation problem).
S:|S|<s S:|S|<s py
2

Thus, the best s-sparse approximation of a vector is a vector with the s largest components of the vector in
magnitude.
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Vector norms contd.

Norm balls

Radius r ball in £4-norm: By(r) ={x €RP: |x|lq <7}

£o.5-quasi norm ball £1-norm ball

£5-norm ball Loo-norm ball TV-semi norm ball

Table: Example norm balls in R3
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Inner products

Definition (Inner product)
The inner product of any two vectors x,y € RP (denoted by (-, -)) is defined as (x,y) = xTy = Zf W0

The inner product satisfies the following properties:

1. (x,y) = (y,%x),Vx,y € RP symmetry
2. ((ax + By),z) = (ax,z) + (By,z),Va,8 € R,VX,y,z € RP linearity
3. (x,x) > 0,Vx € RP positive definiteness

Important relations involving the inner product:
> Hélder's inequality: [(x,y)| < ||x|lqlly|l», where r > 1 and % +1=1

> Cauchy-Schwarz is a special case of Hélder's inequality (¢ = r = 2)

Definition (Inner product space)

An inner product space is a vector space endowed with an inner product.
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Vector norms contd.

Definition (Dual norm)

Let || - || be a norm in RP, then the dual norm denoted by || - ||* is defined:
Ix|I* = sup xTy, forallx,ycRP
llyll<1

> The dual of the dual norm is the original (primal) norm, i.e., ||x||** = ||x]|.

> Holder's inequality = || - || is a dual norm of || - || when str=1
Example 1

i) |- |2 is dual of || - ||2 (i.e. || - ||2 is self-dual): sup{zTx | ||x|2 < 1} = ||z||2.

ii) || -|l1 is dual of || - ||co, (and vice versa): sup{zTx | ||x|lcc < 1} = ||2|1.
Example 2

What is the dual norm of || - || for ¢ = 1 + 1/log(p) for p > 17
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Vector norms contd.

Definition (Dual norm)
Let || - || be a norm in RP, then the dual norm denoted by || - ||* is defined:

[x|*= sup x"y, forallx,y€RP
lyll<1

> The dual of the dual norm is the original (primal) norm, i.e., ||x||** = ||x]|.

> Holder's inequality = || - || is a dual norm of || - || when str=1
Example 1

i) |- |2 is dual of || - ||2 (i.e. || - ||2 is self-dual): sup{zTx | ||x|2 < 1} = ||z||2.

ii) || -|l1 is dual of || - ||co, (and vice versa): sup{zTx | ||x|lcc < 1} = ||2|1.
Example 2

What is the dual norm of || - || for ¢ = 1 + 1/log(p) for p > 17

Solution
By Hélder's inequality, || - || is the dual norm of || - ||, if % + % = 1. Therefore, » = 1 + log(p) is the dual.
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Metrics

o A metric on a set is a function that satisfies the minimal properties of a distance.
Definition (Metric)

Let X be a set, then a function d(-,-) : X X X — R is a metric if Vx,y € X :

(a) d(x,y) >0 for all x and y  (nonnegativity)
b

(b) d
(c) d(x,y) =d(y,x) (symmetry)
(d) d(x,y) < d(x,z) + d(z,y) (triangle inequality)

(x,y) =0if and only if x =y (definiteness)

Observations: o A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
o A metric space (X, d) is a set X with a metric d defined on X

o Norms induce metrics while pseudo-norms induce pseudo-metrics
Example

> Euclidean distance: dg(x,y) = ||x — yl|2

> Bregman distance: dp(-,-) cf. Lecture 3
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Matrices

. Special matrix types
Basic matrix definitions
Matrix decompositions

. Complexity of matrix operations

g W

Matrix norms
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Matrices

Definition
A matrix is a rectangular array of numbers arranged by rows and columns.

o In the sequel, we describe a set of special matrices to get started.
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Special matrices

Definition (ldentity matrix)

The identity matrix (denoted I € RP*P) is a square matrix of zero entries except on the main diagonal, which
has ones on it. For compatible matrices A and B, it satisfies:

IA = A and BI = B.

Definition (Orthogonal (or Unitary) matrix)

A matrix A € RPX? is orthogonal or unitary if ATA = AAT =1

Definition (Triangular matrix)

A matrix A € RP*P is lower triangular if all its entries above the main diagonal are zero, i.e., a;; = 0 for j > i;

while it is upper triangular if AT is lower triangular.

Definition (Permutation matrix)

A matrix P € R"*P is permutation if it has only one 1 in each row and each column and satisfies PPT =1
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Special matrices contd.

Definition (Incidence matrix)

An incidence matrix shows the relationship between two sets X and ). The i-th row corresponding to entry
x; € X and the j-th column corresponding to entry y; € ) of an incidence matrix is 1 if x; and z; are related
and O if they are not.

Definition (Adjacency matrix)

An adjacency matrix is a symmetric square matrix with {0, 1} entries where 1 or 0 at the (¢, j)-th location
indicates the i-th and the j-th vertices of a graph are adjacent (i.e., share an edge) or not.

> The diagonal entries of adjacency matrices take different values depending on different conventions.
Definition (Stochastic matrix)

A matrix P € R™*P? is stochastic (also know as transition or probability) matrix if
Zj pij =1 for 0 < p;; <1; while A is doubly stochastic if ZZ Dij = Zj pij = 1.

Definition (Gaussian matrix)

A matrix A € RPXP is Gaussian if its entries aj ~ N (,u, 02) for I,k € [p]. That is, its entries are

independent and identically distributed (i.i.d.) with mean p & variance o2

distribution.

according to the Gaussian
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Special matrices contd.

Definition (Fourier matrix)

A matrix F € CPXP is Fourier matrix if its entries

1.
fie = 7612””“/1’, for lLkelp], i=v—1.
p

Definition (Discrete Cosine Transform matrix)

A matrix A € RP*? is Discrete Cosine Transform (DCT) matrix if its entries

2 1
a = 7cos(z(l—1)<k—*>);1§lﬁpa1§k§p~
p p 2

> The Fourier and DCT matrices are both orthogonal, i.e., FZF = FFH =1, where
FH = complex-conjugate(FT).

> Both matrices are rarely stored since they have an implicit fast matrix-vector multiplication algorithm.
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Special matrices contd.

Definition (Hadamard matrix [4])

n n
Let the indices I, k € [2"] be defined as 1= 1,277 +1, k=3 k27 +1. A matrix
j=1 j=1
H = H,, € R2"*2" js a Hadamard matrix (or Hadamard transform) if

"k

(—1)&es=1

1 j
hip = W .

> The Hadamard matrix is orthogonal and self-adjoint, i.e., Hy, = Hz;

> The Hadamard matrix is rarely stored since it has a fast matrix-vector multiplication algorithm that uses
the recursive identity:

H, = 1 (anl H,1

— Hy=1.
\/i Hy 1 *Hn—1)7 0
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Special matrices contd.

Definition (Toeplitz matrix [2])
Let a t = (t1,t2,.
matrix if
t1
tpt1
tpt2

top—2 t2p—3

..,tap—1) be fixed or drawn from a probability distribution P(t). Then T € RP*? is Toeplitz

tp—1 tp
tp—2 tp—1
tp—3 tp—2

t1 to
top—1 tp+1 t1
Definition (Circulant matrix [8])
Let a ¢ = (c1,c¢2,...,¢p) be fixed or drawn from a probability distribution P(c), then C € RP*? is Circulant
matrix if
c2
c3
C =
Cc1
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Special matrices contd.

Partial Fourier, Partial Toeplitz, Partial Circulant, ...

A partial Fourier, Toeplitz or Circulant matrix refers to a matrix consisting of a subset of the rows of a Fourier,
Toeplitz or Circulant matrix, respectively.

> Fourier, Hadamard, Toeplitz and Circulant matrices are structured matrices. In addition, Toeplitz and
Circulant matrices are banded.

> These matrices also have lower degrees-of-freedom as compared to a general matrix in RP*P. Hence,
computations revolving around these matrices are typically cheaper than the computation we need for a
general matrix.

> Incident and adjacency matrices are often used in graph theory. They have important decompositional and
computational properties.
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Basic matrix definitions

Definition (Nullspace of a matrix)

The nullspace of a matrix, A € R"*P, (denoted by null(A)) is defined as
null(A) = {x € R? | Ax =0}

> null(A) is the set of vectors mapped to zero by A.
> null(A) is the set of vectors orthogonal to the rows of A.

Definition (Range of a matrix)
The range of a matrix, A € R"*P, (denoted by range(A)) is defined as

range(A) = {Ax | x e RP} CR"
> range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)
The rank of a matrix, A € R"*P, (denoted by rank(A)) is defined as

rank(A) = dim (range(A))
> rank(A) is the maximum number of independent columns (or rows) of A, = rank(A) < min(n,p).

> rank(A) = rank(AT); and rank(A) + dim (null(A)) = p.
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Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)

The vector x is an eigenvector of a square matrix A € R"*X™ if Ax = Ax where A € R is called an eigenvalue
of A.

> A scales its eigenvectors by it eigenvalues.
Definition (Singular values & singular vectors)
For A € R™*P and unit vectors u € R” and v € RP if

Av=ocu and ATu=ov

then o € R (o > 0) is a singular value of A; v and u are the right singular vector and the left singular vector
respectively of A.

Definition (Symmetric matrix)
A matrix A € R"*" is symmetric if A = AT,

Lemma

The eigenvalues of a symmetric A are real.

Proof.
Assume Ax = \x, x € CP,x # 0, then X7 Ax = X7 (Ax) = X7 (Ax) = A E?:l ;|2
but X7 Ax = (Ax)Tx = ()\x)Tx = XZ?:I lz;|2 = A=) ie. AER m]
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Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)
A symmetric matrix A € R™*" is positive semidefinite (denoted A > 0) if x” Ax > 0 for all x # 0; while it is
positive definite (denoted A > 0) if xTAx > 0

> A = 0iff all its eigenvalues are nonnegative i.e. Amin(A) > 0.

> Similarly, A > 0 iff all its eigenvalues are positive i.e. Amin(A) > 0.

> A is negative semidefinite if —A > 0; while A is negative definite if —A > 0.

> Semidefinite ordering of two symmetric matrices, A and B: A>Bif A—B > 0.

Example (Matrix inequalities)

1. IfA>=0and B >0, then A+ B >0
 fA>BandC>=D, then A+ C>B+D
. fB<0then A+B <A
If A>0and >0, then ®A >0
. If A >0, then A2 >0
. If A =0, then A=l =0
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Matrix decompositions

Definition (Eigenvalue decomposition)
The eigenvalue decomposition of a square matrix, A € R*X" is given by:
A =XAX"!
> the columns of X € R"*" i.e. x;, are eigenvectors of A

> A =diag (A1, A2,..., n) where \; (also denoted \;(A)) are eigenvalues of A

> A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices

If A € R"*" is symmetric, the decomposition becomes A = UAUT
where U € R™X™ is unitary (or orthonormal), i.e. UTU =1 and )\; are real

If we order A1 > A2 > -+ > Ay, A;(A) becomes the ith largest eigenvalue of A.

Definition (Determinant of a matrix)

The determinant of a square matrix A € RPXP, denoted by det(A), is given by:
det(A) = TIP_, A,

where \; are eigenvalues of A.
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Matrix decompositions contd

Definition (Singular value decomposition)

The singular value decomposition (SVD) of a matrix, A € R"*?, is given by:
r
A=UxVvT = Z O'»L'LI»L'VZT
i=1
> rank(A) = r < min(n, p) and o; is the ith singular value of A

> u; and v; are the ith left and right singular vectors of A respectively
> U cR™ " and V € RPX" are unitary matrices (i.e. UTU =1)
> 3 =diag(c1,02,...,0.) Where 01 > 02> ... >0, >0

> v; are eigenvectors of ATA; o; = /A; (ATA) (and \; (ATA) =0 for i > r) since
ATA = (Usv?)" (USVT) = (VE2VT)

> u; are eigenvectors of AAT; o; = /)i (AAT) (and )\; (AAT) =0 for ¢ > r) since
AAT = (UsvVT) (UsvT)” = (Us?UT)
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Matrix decompositions contd

Definition (LU)
The LU factorization of a nonsingular square matrix, A € RP*P, is given by:
A =PLU

where P is a permutation matrix!, L is lower triangular and U is upper triangular.

Definition (QR)
The QR factorization of any matrix, A € R™"*P, is given by:
A =QR

where Q € R™"*" is an orthonormal matrix, i.,e. QTQ =1, and R € R"*? is upper triangular.

Definition (Cholesky)

The Cholesky factorization of a positive definite and symmetric matrix, A € RP*P, is given by:
A=1LT

where L is a lower triangular matrix with positive entries on the diagonal.

L A matrix P € RPXP is permutation if it has only one 1 in each row and each column.
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Complexity of matrix operations

Definition (floating-point operation)

A floating-point operation (flop) is one addition, subtraction, multiplication, or division of two floating-point
numbers.

Table: Complexity examples: vector are in RP, matrices in R™*P, RP*™ or RP*P [5]

Operation [ Complexity [ Remarks
vector addition p flops
vector inner product 2p — 1 flops or = 2p for p large
matrix-vector product n(2p — 1) flops or &~ 2np for p large

2m if A is sparse with m nonzeros
matrix-matrix product mn(2p — 1) flops or =~ 2mnp for p large

much less if A is sparse!
LU decomposition %p3 + 2p? flops or %p:‘ for p large

much less if A is sparse!
Cholesky decomposition %p3 + 2p? flops or %p?’ for p large

much less if A is sparse!
SVD C1n?p + Cap? flops | C1 =4, Ca = 22 for R-SVD algo.
Determinant complexity of SVD

1 Complexity depends on p, no. of nonzeros in A and the sparsity pattern.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 71



Computing eigenvalues and eigenvectors

o There are various algorithms to compute eigenpairs of matrices [10].
o One can choose an algorithm depending on the setting.

o Difference considerations include computational complexity, number of eigenvalues or eigenvectors needed.

Power Method

k
Starting with an initial vector x°0, x*t1 = ||AAX+H2 converges to the leading eigenvector of the matrix A under
k* k
certain conditions. Moreover, \F = % converges to the leading eigenvalue, i.e., the one with largest

absolute value.

o Power method only uses matrix-vector multiplications and normalizations.
o Useful when A is a large matrix with sparse entries as it does not require singular value matrix decomposition

o Applied in the original PageRank algorithm of Google.

Inverse Power Method

Knowing an upper bound « on the largest eigenvalue of A, apply power method to A — oI, i.e., iterate
k+1 (A—aD)x*

— k _ xF* Axk q
= TA—aDxt3" Then, \* = £ 2% converges to the smallest eigenvalue of A.
- 2

X
xk*xk
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Computing eigenvalues and eigenvectors

Shifted Power Method

A variant of the power method is the shifted power method. Here, we choose a scalar s and apply the power
method to A — sI. The parameter s shifts the eigenvalue A of A to A — s of A — sI. If the shift is chosen
appropriately, the algorithm can converge faster to the leading eigenvalue.

Remark: o Large-scale problems need newer methods that control storage in addition to arithmetic costs.

Randomized Shifted Power Method

When the storage is the overriding concern, we can run the shifted power method with a random starting vector.

Costs (Randomized shifted power method for symmetric matrices)

Let M € S, a symmetric matrix. For each € € (0,1] and § € (0, 1], the shifted power method computes a unit
vector u € F™ that satisfies:

w* Mu < Amin (M) + €||M|| with probability at least 1 — §

after ¢ > % + e Llog(n/s?) iterations. The arithmetic cost is O(g) matrix-vector multiplies with M and O(gn)
extra operations. The working storage is about 2n numbers.
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Computing eigenvalues and eigenvectors

o In case storage is not the issue, we can use the randomized Lanczos method.

Lanczos algorithm goal

Given a symmetric matrix A € S,, with eigenvalues A\ > A\a > --- > )\, and the associated eigenvectors
ui,...,uy, Lanczos algorithms finds approximations for the k largest eigenvalues of A and its associated
eigenvectors, where £ < n.

Randomized Lanczos algorithm

o Select a random vector v, construct a Krylov subspace, K(A, v, k) = span{v, Av, A%v,..., AF=1v}.
o Project A into this Krylov subspace, T' = projic A
o Use the eigenvalues and vectors of T' as approximations to those of A.
In matrix form:
K,=[vAv ... A1y e R?XF
Qi =191 92 ---qi] + ar(Ky)
T = QF AQ, € RM*
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Computing eigenvalues and eigenvectors

Costs (Randomized Lanczos algorithm)

Let M € S,. For e € (0,1] and 6 € (0,0.5], the randomized Lanczos method computes a unit vector u € F™
that satisfies: .
u* Mu < Amin (M) + §||MH with probability at least 1 — 25

after ¢ > % +e1l/2 log(n/2) iterations. The arithmetic cost is at most ¢ matrix-vector multiplies with M and
O(gn) extra operations. The working storage is O(qn).

Storage Optimal (double loop) Randomized Lanczos [12]
More efficiently one can run the for loop in the Lanczos algorithm twice:
> The first time to find the weigth vector w.
> The second to generate the eigenvector v using the weigths found in u.

This methods focus on regenerating the Lanczos vectors instead of storing them to construct the approximate
eigenvector. It takes the weighted average in the end.
With this we can change the storing cost to O(q + n) instead of O(gn) as previously stated.
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Linear operators

o Matrices are often given in an implicit form.

o It is convenient to think of them as linear operators.

Proposition (Linear operators & matrices)

Any linear operator in finite dimensional spaces can be represented as a matrix.

Example
Given matrices A, B and X with compatible dimensions and the linear operator M : R"*P — R™P a linear
operator can define the following implicit mapping

M(X) = (BT ® A) vec(X) = vec(AXB),

where ® is the Kronecker product and vec : R®XP — R™P is yet another linear operator that vectorizes its
entries.
Note: Clearly, it is more efficient to compute vec(AXB) than to perform the matrix multiplication

(BT ® A) vec(X).
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Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an n X p matrix is a map || - || : R®*P — R such that for all matrices A, B € R"*P and scalar A € R
(a) ||A]| > 0 for all A € R**P nonnegativity

(b) [JA|| =0 if and only if A =0  definitiveness

(c) IIMAIl = IAI[All homogeniety

(d) JA+BJ| <|A| +|B] triangle inequality

Definition (Matrix inner product)

Matrix inner product is defined as follows

(A, B) = trace (ABT) .
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Matrix norms contd.

> Similar to vector £4-norms, we have Schatten g-norms for matrices.
Definition (Schatten g-norms)

Allg = P (0(A);)Y l/q, where o(A); is the 5" singular value of A.
q =1

Example (with 7 = min{n, p} and 0; = 0(A);)

AL =[|All« = Zai = trace ( V ATA> (Nuclear/trace)
i=1

n p
Az =[Allr = = ZZ |ai;|?2  (Frobenius)
i=1 j=1
A
[Alloc = [|A] = = max 1A (Spectral /matrix)
x#0  ||x]|
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Matrix norms contd.

Problem (Rank-r approximation)

Find argmin ||[X —Y]||r subject to: rank(X) <.
pN
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Matrix norms contd.

Problem (Rank-r approximation)
Find argmin ||[X —Y]||r subject to: rank(X) <.
X

Solution (Eckart—Young—Mirsky Theorem)

argmin X —Y|zp= argmin [|[X—-UZyV7T|z, (SVD)
X:rank(X)<r X:rank(X)<r

= argmin ||[UTXV — Svy||p, (unit. invar. of || - ||p)
X:rank(X)<r

=U| argmin |Z-3v|r | VYT, (LetZ=1UXVT)
Z:rank(Z)<r

=UH, (Zv) VT, (r-sparse approx. of the diagonal entries)

Singular value hard thresholding operator H, performs the best rank-r approximation of a matrix via sparse
approximation: We keep the r largest singular values of the matrix and set the rest to zero.
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Matrix norms contd.

Definition (Operator norm)
The operator norm between ¢, and ¢, (1 < g,r < co0) of a matrix A is defined as

[Allg—r = sup [lAx]|

lIx]lg<1
Problem
Show that ||A||2—2 = ||A]| i.e., 2 to ¢2 operator norm is the spectral norm.
Solution

|All2—2 = sup [|Ax[l2= sup |[USVTx|y (using SVD of A)
lIxll2<1 lIxll2<1

= sup ||ZVTx|2 (rotational invariance of || - ||2)
lIxll2<1

= sup || Zz|2 (letting VIx = z)
llzll2<1

= sup
llzll2<1
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Matrix norms contd.

Other examples

> The ||A]lco—soo (norm induced by £oo-norm) also denoted ||A ||, is the max-row-sum norm:
P

|Alloo—oo = sup{[Axlloc | lxlloo < 1} = max " ay|.
1= “es

seeey

Jj=1

> The ||A|l1—1 (norm induced by ¢1-norm) also denoted ||A||1, is the max-column-sum norm:

n
1Al = sup(llAxily | Il <1} = max 3 oyl
s
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Matrix norms contd.

Useful relation for operator norms

The following identity holds

[|Allg=sr = max z, Ax) = max (ATz,x) =: ||AT ||/
Tzl <tlixllg=1" lscllr <1, 1z v =1 ’ e

whenever 1/g+1/¢' =1=1/r+1/r".

Example

1. ”A”ooﬂl = ||AT||1~>oo-
2. |All2—1 = [|AT]|2 0.
3. |Allcm2 = [AT [12.
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*Matrix norms contd.

Computation of operator norms

> The computation of some operator norms is NP-hard* [4]; these include:

L |Alloco—1
2. [|All2—1
3. [[A]loo—2

> But some of them are approximable [11]; these include

1. ||Allco—»1  (via Gronthendieck factorization)
2. ||Allcc2  (via Pietzs factorization)

*. See Recitation 1.
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Matrix norms contd.

Matrix & vector norm analogy

Vectors | [Ix[ln | x| Ixlleo

Matrices | X[« [ [X[r | Xl

Definition (Dual of a matrix)

The dual norm of A € R"*P is defined as
Al = sup {trace (ATX) | X[ <1}.

Matrix & vector dual norm analogy

Vector primal norm ‘ [1x]|1 ‘ [Ix]|2 ‘ [l oo
Vector dual norm [ [1%]l oo [ [[x]|2 [ lIx||1
Matrix primal norm [1X]] Xl 11X
Matrix dual norm [1X] Xl 11X«
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Matrix norms contd.

Definition (Nuclear norm computation)

JA|l« := [[o(A)|l1 where o(A) is a vector of singular values of A

1
= min U A\ = min Z (g% + V|12
o IOIEIVIE = min 2 (101 + V1)

U,V:A=U

Additional useful properties are below:

> Nuclear vs. Frobenius: ||A||lr < JAl|x < y/rank(A) - ||A|lF

> Holder for matrices: [{A,B)| < ||Allp|IBllq. when % + é =1

> We have

L Alz < [|Allr
2. [|All55e < A= 1llAllco— oo
3. |JAlIZ2_,5 < [|All1—1 when A is self-adjoint.
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Linear systems
Problem (Solving a linear system)
Which is the best method for solving the linear system

Ax=Db?

Solving a linear system via optimization

To find a solution to the linear system, we can also solve the optimization problem
. 1
min fa,p(x) i= 2 (Ax,x) = (b,x)
x

which is seen to have a solution satisfying Ax = b by solving Vx fa (%) = 0.
> fa,b is a quadratic function with Lipschitz-gradient (L = [|A]|).

> If A is a p x p symmetric positive definite matrix, (i.e., A = AT > 0),
fA is also strongly convex (1 = A1(A), the smallest eigenvalue of A).

> if A is not symmetric, but full column rank, we can consider the system
ATAx = ATb
which can be seen as: ®x =y where ® is symmetric and positive definite.
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Linear systems

Remark
If ® is diagonal and positive definite, given a starting point x° € dom(f), successive minimization of fg y (x)
along the coordinate axes yield x* is at most p steps.

Diagonal & Non-diagonal ®

o

e
X,
EPFL

XO
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How can we adapt to the geometry of ®?
Conjugate gradients method - ® symmetric and positive definite

Generate a set of conjugate directions {p°, p!,...,pP~1} such that
(p%, ®p?) =0 for all ¢ # j (which also implies linear independence).

Successively minimize fg , along the individual conjugate directions. Let

rf = ®&xF — y and xFHl = xk 4 ozkpk ,
where o, is the minimizer of fs (x) along xk + ap®, ie.,
P 9
(pF, @p*)

Theorem

For any x° € RP the sequence {x"*} generated by the conjugate directions algorithm converges to the solution
X* of the linear system in at most p steps.

Intuition

The conjugate directions adapt to the geometry of the problem, taking the role of the canonical directions when
® is a generic symmetric positive definite matrix.

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 48/ 71



Conjugate gradients method

Intuition

The conjugate directions adapt to the geometry of the problem, taking the role of the canonical directions when
& is a generic symmetric positive definite matrix.

Back to diagonal

For a generic symmetric positive definite ®, let us consider the variable X := S~1x, with
s=[p"....,p"""]
where {p*} are the conjugate directions with respect to ®. fa,y(x) now becomes
r = = L = T, =
fo.y ()= fe y(SX) = 5(x, (87 @8)x) = (5", %).
By the conjugacy property, (p?, ®p7) =0, V i # j, the matrix ST®S is diagonal. Therefore, we can find the

minimum of f(X) in at most p steps along the canonical directions in X space, which are the {pk} directions in
X space.
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Conjugate directions naturally adapt to the linear operator

Diagonal ¢ Non-diagonal ®

o
'Y
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Conjugate gradients method

Theorem

For any x° € RP the sequence {x"*} generated by the conjugate directions algorithm converges to the solution
X* of the linear system in at most p steps.

Proof.

Since {pk} are linearly independent, they span RP. Therefore, we can write

x* — %% = agp® + a1p’ + -+ + ap_1pP

for some values of the coefficients ay. By multiplying on the left by (p*)7'® and using the conjugacy property,

we obtain
(p*, @(x* —x9))
Tk = "k ®ok)
(pk, ®pk)
Since xF = x*=1 + a;_1p*~1, we have x* = x0 + agp® + a1p! + - - - + a_1p* 1. By premultiplying by

(p*)T® and using the conjugacy property, we obtain (p”, ®(x* — x0)) = 0 which implies
(pk’ é(X* - X0)> = (pk’ é(X* - xk)> = <pk7y - ka)> = 7<pk7rk>

k .k
(p",r") o

so that ap, = — BF By = .
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Conjugate gradients method

How can we efficiently generate a set of conjugate directions?

Iteratively generate the new descent direction p* from the previous one:

p* = —r* + gp*!
For ensuring conjugacy (p¥, ®p*~1) = 0, we need to choose S, as
5, = (ck, @pk—1)
P (kT @pkT)
Lemma
The directions {p®, p',...,pP} form a conjugate directions set.
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Conjugate gradients method

Conjugate gradients (CG) method

1 Initialization:
1.a Choose x° € dom (f) arbitrarily as a starting point.
1.bSetr? =®x? —y, p® = -0 E=0.

2. While r* # 0, generate a sequence {x*};>¢ as:

— __kpky
)
xFH1 = xk 4o, pk
r.1c+1 — ‘I)xk+1 —y
_ (P eph)
B:ﬂ <pkk’<fpk> k
pFtt  =-—r*tl 48, 1p
k =k+1
Theorem
Since the directions {p°, pt,..., pk} are conjugate, CG converges in at most p steps.
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Other properties of the conjugate gradient method

Theorem

If ® has only r distinct eigenvalues, then the CG iterations will terminate at the solution in at most r iterations.

Theorem
If @ has eigenvalues \1 < Ao < --- < Ap, we have that

Ap—k — A1
[x* ! — x*||g < ()\p o )\1> %% — x*||s,
o

where the local norm is given by ||x||e = VxT ®x.

Theorem

Conjugate gradients algorithm satisfy the following iteration invariant for the solution of ®x =y

*||<1>§2 7VH((}M

I+ — I — x* e,
\RE(P)+1
where the condition number of ® is defined as k(®) := ||®||||® 71| = i‘\—f.
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Matrix perturbation inequalities

> In the theorems below A, B € RP*P are symmetric positive semi-definite matrices with spectra
{A(A)M_, and {Xi(B)}_, where Ay > Xp > -+ > A,

Theorem (Lidskii inequality)
Aig (A+B) 4+, (A+B) <X (A)+--- X, (A) + A (B)+---+ X, (B),
forany 1 <43 <---<ip <p.

Theorem (Weyl inequality)

Xitj—1 (A+B) <X (A)+X;(B), forany i,j>1 and i+j—1<p.

Theorem (Interlacing property)

Let A, = A(1:n,1:n), then
Ant1 (Ant1) < An (An) +An (Apt1)  for n=1,...,p.

> These inequalities hold in the more general setting when \; are replaced by o;.
> The list goes on to include Wedin bounds, Wielandt-Hoffman bounds and so on.

> More on such inequalities can be found in Terry Tao's blog (254A, Notes 3a).
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*Tensors

Basic tensor definitions
Notation and preliminaries
Tensors decompositions

Tensor rank

SR

Banach’s result on supersymmetric tensors

*: PhD material
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Basic definitions

o Tensors provide natural and concise mathematical representations of data.

Definition (Tensor)

An order m tensor in p-dimensional space is a mathematical object that has p indices and p™ components and
obeys certain transformation rules.

> In the literature, rank is used interchangeably with order, i.e., an order-k tensor is also referred to as
kth-rank tensor.

> We often use order instead of rank so that it is not confused with the rank of a tensor.

> Furthermore, mode or way is also used to refer to the order of a tensor.

> Tensors are multidimensional arrays and are a generalization of:

1. scalars - tensors with no indices; i.e., order zero tensor.
2. vectors - tensors with exactly one index; i.e., order one tensor.
3. matrices - tensors with exactly two indices; i.e., order two tensor.

> A third-order tensor has exactly three indices.

> A higher-order tensor has greater than two indices; i.e., a tensor of order > 2.
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Notation & preliminaries

Notation & preliminaries
> The notation conforms to [7] which is the main reference for this material.
> Higher-order tensors are denoted by boldface Euler script letters, e.g. A.
> Element (4,4, k,...) of a tensor \A are denoted by a;p...

> The mth element in a sequence is denoted by a superscript in parentheses,
e.g. A(™) denotes the mth matrix in a sequence.

> Subarrays of a tensor are formed when a subset of the indices of the elements of a tensor are fixed.
> Fibers are the higher-order analogue of matrix rows and columns, defined by fixing every index but one.

> Slices are 2-dimensional sections of a tensor, defined by fixing all but 2 indices.
For instance, the horizontal, lateral, and frontal slices of a third-order tensor A are denoted by A;.., A.j.,
& A..; (or more compactly A;, Aj, & Ay) respectively.
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Notation & preliminaries

Notation & preliminaries
> The notation conforms to [7] which is the main reference for this material.
> Higher-order tensors are denoted by boldface Euler script letters, e.g. A.
> Element (4,4, k,...) of a tensor \A are denoted by a;p...

> The mth element in a sequence is denoted by a superscript in parentheses,
e.g. A(™) denotes the mth matrix in a sequence.

> Subarrays of a tensor are formed when a subset of the indices of the elements of a tensor are fixed.
> Fibers are the higher-order analogue of matrix rows and columns, defined by fixing every index but one.

> Slices are 2-dimensional sections of a tensor, defined by fixing all but 2 indices.
For instance, the horizontal, lateral, and frontal slices of a third-order tensor A are denoted by A;.., A.j.,
& A..; (or more compactly A;, Aj, & Ay) respectively.

Curse of dimensionality

Storage of an order-m tensor with mode sizes p requires p"* elements.
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Notation & preliminaries contd.
o Tensors are linear vector spaces.
Definition (Norm)

The norm of a tensor A € RP1%XP2X""XPk is given by

p1 p2

lal= > > - Zm

11=11i9=1 =il

o This is the analogue to the matrix Frobenius norm.

Definition (Inner product)

The inner product of two same-sized tensors X, € RP1XP2X " XPk ig given by

p1 b2 Pk
E E E Lijig...ipYirin. . ig
i1=142=1 ip=1

o It follows immediately that (A, A) = ||A]|.
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Notation & preliminaries contd.

Rank-one tensors
A k-way tensor A € RP1XP2X"XPk is rank-one if it can be written as the outer product of k vectors, i.e.

A=vD ov@ 6. oyk)

where “o” represents the vector outer product.
> Each element of the tensor is the product of the corresponding vector elements:

— (W ,,@ v<f> V1 <in < pp.

Tiqig--iy i1 Uiy
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Notation & preliminaries contd.

Rank-one tensors

A k-way tensor A € RP1XP2X"XPk is rank-one if it can be written as the outer product of k vectors, i.e.
A=vD ov@ o...0vE
where “o” represents the vector outer product.
> Each element of the tensor is the product of the corresponding vector elements:

Tiqig--iy i1 Uiy

— U(l)U(2> . ’Uif) V1 < in < pn.

Definition (Cubical tensors)

A tensor A € RP1X"XPk s cubical if every mode is same size, i.e. p; = --- = pr = p; as a shorthand an
order-k cubical tensors is denoted as A € RFRP.

Definition (Symmetric tensors)

A cubical tensor A € ®@*RP is symmetric (also referred to as super-symmetric) if its k-way representations are
invariant to permutations of the array indices: i.e. for all indices 7;,2,...,i; € [p] and any permutation 7 on k:

Qigig..i = Qip(qyin(2)-tn(k)"
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Notation & preliminaries contd.

Why tensors are important?
Multivariate functions are related to multidimensional arrays or tensors:

Take a function f (x1,...,Xp); take a tensor-product grid and get a tensor, i.e.

@iyig..ip = F (X1(11),- .-, Xp(ip))

lions@epfl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 61/ 71



Notation & preliminaries contd.

Why tensors are important?

Multivariate functions are related to multidimensional arrays or tensors:

Take a function f (x1,...,Xp); take a tensor-product grid and get a tensor, i.e.

@iyig..ip = F (X1(11),- .-, Xp(ip))

Where does tensors come from?

> n-th derivative of a multivariate function f (z1,...,2p), i.e. V™ f (z1,...,2p)
> p-dimensional PDE: Au = f, u = u (X1,...,Xp)

> Data (images, video, hyperspectral images, etc)

> Latent variable models, joint probability distributions

> Many others
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Tensor decomposition

Definition (Tensor decomposition [7])
Tensor decomposition refers to the factorization of a tensor into a finite sum of component rank-one tensors.

> This is the analogue of the SVD for matrices and is also known as parallel factors and canonical
decompositions.
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Tensor decomposition

Definition (Tensor decomposition [7])
Tensor decomposition refers to the factorization of a tensor into a finite sum of component rank-one tensors.

> This is the analogue of the SVD for matrices and is also known as parallel factors and canonical
decompositions.

Example

Given a order-3 tensor A € RP1XP2XP3 jt's decomposition attempts to express it as

R
A~ E Xy O Yy O Zp,
=il

where R > 0 is integer and for r = 1,..., R, x, € RP1  y, € RP2, and z, € RP3. Elementwise, this
decomposition can be written as

R
ajjp ~ E TirYjr2kr for i=1,...,p1, j=1,...,p2, k=1,...,p3.
r=1
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Tensor decomposition contd.

Definition (Factor matrices)

Given a decomposition A ~ Zle X O yr O Zr, the factor matrices refers to the combination of the vectors
from the rank-one components, i.e. X = [x1 X2 -+ xg] and similarly for Y and Z.

> Thus tensor decomposition can be concisely written as
R
A= [X,Y,Z]] = g Xr OYr O Zp.
r=1

> |If we assume that the columns of XY, and Z are normalized with the weights absorbed in a vector A,
then the tensor decomposition can further be expressed as

R
A=[NX,Y,Z]] = Z ArXp O Yy O Zp.
r=1
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Tensor rank

Definition (Tensor rank)

The rank of a tensor A denoted rank(.A) is the smallest number of rank-one tensors that generate .A as their
sum.

> This is the smallest number of components in an exact tensor decomposition where “exact” means the
decomposition holds with equality:

R
A=[X,Y,Z)] = Zxr o Yr 0 Zy.
r=1

> An exact tensor decomposition with R = rank(.A) is called rank decomposition.
> This is the exact analogue of the definition of a matrix rank but the properties of a matrix and a tensor
ranks are quite different.
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Tensors rank contd.

Tensor rank approximation: caveat!

Not much is known about the generalizability of matrix notions to tensors particularly rank approximation.

> The equivalence of the Eckart-Young-Mirsky theorem for rank-k approximation of matrices does not exist
for tensors.

1. For instance, summing k of the factors of a third-order tensor of rank R does not necessarily yield a best rank-k
approximation.

2. Kolda [6] gave an example where the best rank-k approximation of a tensor is not a factor in the best rank-2
approximation.
> The notion of tensor (symmetric) rank is considerably more delicate than matrix (symmetric) rank. For
instance:
1. Not clear a priori that the symmetric rank should even be finite [3].

2. Removal of the best rank-1 approximation of a general tensor may increase the tensor rank of the residual [9].

> It is NP-hard to compute the rank of a tensor in general; only approximations of (super) symmetric tensors
possible [1].
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* Tensors as multilinear maps

> Just as a matrix can be pre- & post-multiplied by a pair of matrices, an order-k tensor can be multiplied

on k-sides by k-matrices.

Definition (Multilinear maps with tensors)

For a set of matrices {Xi ERPX™Mi | 4 € [k}}, the (¢1,1%2, ..., %x)-th entry of a k-way array representation of

A(Xy,...,X};) € RMIX XMy g

AL Xy = D Guaedy Xl Xalj, o [X

J1se-5dk E[D]

where [X;]; is the (j, k) entry of a matrix X;.

Example

1. If A is a matrix (k = 2), then -
A (X1, X)) = XTAX,

2. For a matrix A and a vector x € RP, we can express Ax as

A(I,x)=Ax
3. With the canonical basis {eil N } we have
A (ei17ei25 000 ,eik) = Aiqig,...ig
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 66/ 71

[ k]jkik ?



* Tensor compression and Tucker decomposition

> The Tucker decomposition is a form of higher-order PCA.

> It also goes by many other names, see [7].

Definition (Tucker decomposition [7])
The Tucker decomposition decomposes a tensor into a core tensor multiplied (or transformed) by a matrix

along each mode.
Example

> In the case of a third-order tensor A € RP1XP2XP3 e have

Ry R2 R3

A= Z Z Z grirorgXry OYry O Zrg = [[g X,Y, Z]]

r1=1ro=17r1=3

> The matrices X € RP1XE1 Y ¢ RP2XE2 and Z € RP3X 3 are the factor matrices and are the principal
components in each mode.

> The tensor G € RE1XE2XE3 g the core tensor and its entries show the level of interaction between
different components.
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* Banach’s results for tensors

> Banach proved that the maximal overlap between a symmetric tensor and a rank-1 tensor is attained at a
symmetric rank-1 tensor.

> Unfortunately, this—seemingly trivial result—is not obvious. That is, if U € Symk(Cp) is a k-index totally
symmetric vector with d dimensions per index, then

MAX ATEX 0. oxy,[1x; [la=1 | (X, U)[?

fulfills x;1 = ... = xn.
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