Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Supplementary Material: Linear Algebra

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2024)

License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

Share Alike

The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

► Full Text of the License

Outline

- ► Review of linear algebra
 - 1. Vectors
 - 2. Matrices
 - 3. *Tensors
- *: PhD material

Preliminaries

- o We use the following standard notation in the Mathematics of Data lectures
 - \triangleright Scalars are denoted by lowercase letters (e.g., k)
 - ▶ Vectors by lowercase boldface letters (e.g., x)
 - ▶ Matrices by uppercase boldface letters (e.g., A)
 - **Component** of a vector \mathbf{x} , matrix \mathbf{A} as x_i , a_{ij} & $A_{i,j,k,...}$ respectively
 - \triangleright Sets by uppercase calligraphic letters (e.g., S)
- \circ We focus on the **field of real** numbers (\mathbb{R})
- o Most results here can be generalized to the field of complex numbers (C)

Vectors

- 1. Vector spaces
- 2. Vector norms
- 3. Inner products
- 4. Dual norms

Vectors

Definition

A vector is an array of numbers arranged by rows or columns.

Vector spaces

Definition

A vector space or linear space over the field ${\mathbb R}$ consists of

- (a) a set of vectors \mathcal{V}
- (b) an addition operation: $\mathcal{V} \times \mathcal{V} \to \mathcal{V}$
- (c) a scalar multiplication operation: $\mathbb{R} \times \mathcal{V} \to \mathcal{V}$
- (d) a distinguished element $\mathbf{0} \in \mathcal{V}$

and satisfies the following properties:

1.
$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
, $\forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$

2.
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z}), \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$$

3.
$$\mathbf{0} + \mathbf{x} = \mathbf{x}, \forall \mathbf{x} \in \mathcal{V}$$

4.
$$\forall \mathbf{x} \in \mathcal{V} \ \exists \ (-\mathbf{x}) \in \mathcal{V} \text{ such that } \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$

5.
$$(\alpha \beta) \mathbf{x} = \alpha(\beta \mathbf{x}), \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall \mathbf{x} \in \mathcal{V}$$

6.
$$\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}, \quad \forall \alpha \in \mathbb{R} \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$$

7.
$$1\mathbf{x} = \mathbf{x}, \forall \mathbf{x} \in \mathcal{V}$$

commutative under addition

associative under addition

0 being additive identity

 $-\mathbf{x}$ being additive inverse

associative under scalar multiplication

distributive

1 being multiplicative identity

Vector spaces contd.

Example (Vector space)

- 1. $\mathcal{V}_1 = \{\mathbf{0}\} \text{ for } \mathbf{0} \in \mathbb{R}^p$
- 2. $\mathcal{V}_2 = \mathbb{R}^p$
- 3. $V_3 = \sum_{i=1}^k \alpha_i \mathbf{x}_i$ for $\alpha_i \in \mathbb{R}$ and $\mathbf{x}_i \in \mathbb{R}^p$

It is straight forward to show that V_1 , V_2 , and V_3 satisfy properties 1–7 shown before.

Definition (Subspace)

A subspace is a vector space that is a subset of another vector space.

Example (Subspace)

 \mathcal{V}_1 , \mathcal{V}_2 , and \mathcal{V}_3 in the example above are subspaces of \mathbb{R}^p .

Vector spaces contd.

Definition (Span)

The **span** of a set of vectors, $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$, is the set of all possible linear combinations of these vectors; i.e.,

$$\operatorname{span} \left\{ \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \right\} = \left\{ \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k \mid \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R} \right\}.$$

Definition (Linear independence)

A set of vectors, $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$, is linearly independent if

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \alpha_2 = \dots = \alpha_k = 0.$$

Definition (Basis)

The **basis** of a vector space, \mathcal{V} , is a set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ that satisfy

(a)
$$V = \mathrm{span}\left\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\right\}$$
, (b) $\left\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\right\}$ are linearly independent.

Definition (Dimension)

The dimension of a vector space, \mathcal{V} , (denoted $\dim(\mathcal{V})$) is the number of vectors in the basis of \mathcal{V} .

Vector norms

Definition (Vector norm)

A norm of a vector in \mathbb{R}^p is a function $\|\cdot\|:\mathbb{R}^p\to\mathbb{R}$ such that for all vectors $\mathbf{x},\mathbf{y}\in\mathbb{R}^p$ and scalar $\lambda\in\mathbb{R}$

- (a) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^p$ nonnegativity
- (b) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$ definitiveness
- (c) $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ homogeniety
- (d) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ triangle inequality

The ℓ_q -norms

For $\mathbf{x} \in \mathbb{R}^p$, the ℓ_q -norm is defined as $\|\mathbf{x}\|_q := \left(\sum_{i=1}^p |x_i|^q\right)^{1/q}$ for $q \in [1, \infty]$.

Example

- (1) ℓ_2 -norm: $\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^p x_i^2}$ (Euclidean norm)
- (2) ℓ_1 -norm: $\|\mathbf{x}\|_1 := \sum_{i=1}^p |x_i|$ (Manhattan norm)
- (3) ℓ_{∞} -norm: $\|\mathbf{x}\|_{\infty} := \max_{i=1,\dots,p} |x_i|$ (Chebyshev norm)

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by $\|\mathbf{x} + \mathbf{y}\| \le c(\|\mathbf{x}\| + \|\mathbf{y}\|)$ for a constant $c \ge 1$.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example

- ▶ The ℓ_q -norm is in fact a quasi norm when $q \in (0,1)$, with $c = 2^{1/q} 1$.
- ► The total variation norm (TV-norm) defined (in 1D): $\|\mathbf{x}\|_{\text{TV}} := \sum_{i=1}^{p-1} |x_{i+1} x_i|$ is a semi-norm since it fails to satisfy (b);
 - e.g., any $\mathbf{x} = c(1, 1, \dots, 1)^T$ for $c \neq 0$ will have $\|\mathbf{x}\|_{TV} = 0$ even though $\mathbf{x} \neq \mathbf{0}$.

Definition (ℓ_0 -"norm")

$$\|\mathbf{x}\|_0 = \lim_{q \to 0} \|\mathbf{x}\|_q^q = |\{i : x_i \neq 0\}|$$

- **Observations:**
- \circ The $\ell_0\text{-"norm"}$ counts the non-zero components of $\mathbf x.$ Hence, it is not a norm.
- \circ It does not satisfy the property (c) \Rightarrow it is also neither a **quasi** nor a **semi-norm**.

Problem (s-sparse approximation)

$$\label{eq:continuous_problem} \mathsf{Find} \quad \mathop{\arg\min}_{\mathbf{x} \in \mathbb{R}^p} \ \|\mathbf{x} - \mathbf{y}\|_2 \quad \mathsf{subject to:} \quad \|\mathbf{x}\|_0 \leq s.$$

Slide 12/71

Problem (s-sparse approximation)

Find
$$\underset{\mathbf{x} \in \mathbb{R}^p}{\operatorname{arg \, min}} \|\mathbf{x} - \mathbf{y}\|_2$$
 subject to: $\|\mathbf{x}\|_0 \leq s$.

Solution

$$\text{Define} \quad \widehat{\mathbf{y}} \in \mathop{\arg\min}_{\mathbf{x} \in \mathbb{R}^p: \|\mathbf{x}\|_0 \le s} \|\mathbf{x} - \mathbf{y}\|_2^2 \quad \text{ and let } \widehat{\mathcal{S}} = \mathop{\mathrm{supp}} \left(\widehat{\mathbf{y}}\right).$$

We now consider an optimization over sets

$$\begin{split} \widehat{\mathcal{S}} &\in \operatorname*{arg\,min}_{\mathcal{S}:|\mathcal{S}| \leq s} \|\mathbf{y}_{\mathcal{S}} - \mathbf{y}\|_2^2. \\ &\in \operatorname*{arg\,max}_{\mathcal{S}:|\mathcal{S}| \leq s} \left\{ \|\mathbf{y}\|_2^2 - \|\mathbf{y}_{\mathcal{S}} - \mathbf{y}\|_2^2 \right\} \\ &\in \operatorname*{arg\,max}_{\mathcal{S}:|\mathcal{S}| \leq s} \left\{ \|\mathbf{y}_{\mathcal{S}}\|_2^2 \right\} = \operatorname*{arg\,max}_{\mathcal{S}:|\mathcal{S}| \leq s} \sum_{i \in \mathcal{S}} \|y_i\|^2 \quad (\equiv \text{modular approximation problem}). \end{split}$$

Thus, the best s-sparse approximation of a vector is a vector with the s largest components of the vector in magnitude.

Norm balls

Radius r ball in ℓ_q -norm:

$$\mathcal{B}_q(r) = \{ \mathbf{x} \in \mathbb{R}^p : ||\mathbf{x}||_q \le r \}$$

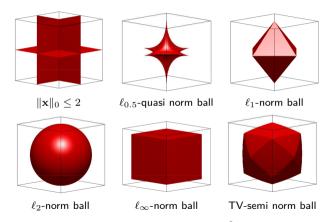


Table: Example norm balls in \mathbb{R}^3

Inner products

Definition (Inner product)

The inner product of any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$ (denoted by $\langle \cdot, \cdot \rangle$) is defined as $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_i^p x_i y_i$.

The inner product satisfies the following properties:

1.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$
 symmetry

$$2. \ \langle (\alpha \mathbf{x} + \beta \mathbf{y}), \mathbf{z} \rangle = \langle \alpha \mathbf{x}, \mathbf{z} \rangle + \langle \beta \mathbf{y}, \mathbf{z} \rangle, \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^p$$
 linearity

3.
$$\langle \mathbf{x}, \mathbf{x} \rangle \geq 0, \forall \mathbf{x} \in \mathbb{R}^p$$
 positive definiteness

Important relations involving the inner product:

- ▶ Hölder's inequality: $|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_q \|\mathbf{y}\|_r$, where r > 1 and $\frac{1}{q} + \frac{1}{r} = 1$
- lacktriangle Cauchy-Schwarz is a special case of Hölder's inequality (q=r=2)

Definition (Inner product space)

An inner product space is a vector space endowed with an inner product.

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^p , then the **dual norm** denoted by $\|\cdot\|^*$ is defined:

$$\|\mathbf{x}\|^* = \sup_{\|\mathbf{y}\| \le 1} \mathbf{x}^T \mathbf{y}, \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$

- ▶ The dual of the dual norm is the original (primal) norm, i.e., $\|\mathbf{x}\|^{**} = \|\mathbf{x}\|$. ▶ Hölder's inequality $\Rightarrow \|\cdot\|_q$ is a dual norm of $\|\cdot\|_r$ when $\frac{1}{q} + \frac{1}{r} = 1$.

Example 1

- i) $\|\cdot\|_2$ is **dual** of $\|\cdot\|_2$ (i.e. $\|\cdot\|_2$ is *self-dual*): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_2 \le 1\} = \|\mathbf{z}\|_2$.
- ii) $\|\cdot\|_1$ is dual of $\|\cdot\|_{\infty}$, (and vice versa): $\sup\{\mathbf{z}^T\mathbf{x}\mid \|\mathbf{x}\|_{\infty}<1\}=\|\mathbf{z}\|_1$.

Example 2

What is the **dual norm** of $\|\cdot\|_q$ for $q=1+1/\log(p)$ for p>1?

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^p , then the **dual norm** denoted by $\|\cdot\|^*$ is defined:

$$\|\mathbf{x}\|^* = \sup_{\|\mathbf{y}\| \le 1} \mathbf{x}^T \mathbf{y}, \quad \text{for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$$

- ▶ The dual of the dual norm is the original (primal) norm, i.e., $\|\mathbf{x}\|^{**} = \|\mathbf{x}\|$. ▶ Hölder's inequality $\Rightarrow \|\cdot\|_q$ is a dual norm of $\|\cdot\|_r$ when $\frac{1}{q} + \frac{1}{r} = 1$.

Example 1

- i) $\|\cdot\|_2$ is **dual** of $\|\cdot\|_2$ (i.e. $\|\cdot\|_2$ is self-dual): $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_2 < 1\} = \|\mathbf{z}\|_2$.
- ii) $\|\cdot\|_1$ is dual of $\|\cdot\|_{\infty}$, (and vice versa): $\sup\{\mathbf{z}^T\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq 1\}=\|\mathbf{z}\|_1$.

Example 2

What is the **dual norm** of $\|\cdot\|_q$ for $q=1+1/\log(p)$ for p>1?

Solution

By Hölder's inequality, $\|\cdot\|_r$ is the dual norm of $\|\cdot\|_q$ if $\frac{1}{a}+\frac{1}{r}=1$. Therefore, $r=1+\log(p)$ is the dual.

Metrics

o A metric on a set is a function that satisfies the minimal properties of a distance.

Definition (Metric)

Let \mathcal{X} be a set, then a function $d(\cdot,\cdot):\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ is a metric if $\forall \mathbf{x},\mathbf{y}\in\mathcal{X}:$

- (a) $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all \mathbf{x} and \mathbf{y} (nonnegativity)
- (b) $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$ (definiteness)
- (c) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symmetry)
- (d) $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$ (triangle inequality)

Observations:

- o A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b)
- \circ A metric space (\mathcal{X},d) is a set \mathcal{X} with a metric d defined on \mathcal{X}
- o Norms induce metrics while pseudo-norms induce pseudo-metrics

Example

- Euclidean distance: $d_E(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_2$
- ▶ Bregman distance: $d_B(\cdot, \cdot)$ cf. Lecture 3

Matrices

- 1. Special matrix types
- 2. Basic matrix definitions
- 3. Matrix decompositions
- 4. Complexity of matrix operations
- 5. Matrix norms

Matrices

Definition

A matrix is a rectangular array of numbers arranged by rows and columns.

o In the sequel, we describe a set of special matrices to get started.

Special matrices

Definition (Identity matrix)

The *identity* matrix (denoted $I \in \mathbb{R}^{p \times p}$) is a square matrix of zero entries except on the *main diagonal*, which has ones on it. For compatible matrices A and B, it satisfies:

$$\mathbf{IA} = \mathbf{A}$$
 and $\mathbf{BI} = \mathbf{B}$.

Definition (Orthogonal (or Unitary) matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ is orthogonal or unitary if $\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I}$.

Definition (Triangular matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ is lower triangular if all its entries above the main diagonal are zero, i.e., $a_{ij} = 0$ for j > i; while it is **upper triangular** if \mathbf{A}^T is lower triangular.

Definition (Permutation matrix)

A matrix $\mathbf{P} \in \mathbb{R}^{n \times p}$ is **permutation** if it has only one 1 in each row and each column and satisfies $\mathbf{PP}^T = \mathbf{I}$.

Definition (Incidence matrix)

An incidence matrix shows the relationship between two sets $\mathcal X$ and $\mathcal Y$. The i-th row corresponding to entry $x_i \in \mathcal X$ and the j-th column corresponding to entry $y_j \in \mathcal Y$ of an incidence matrix is 1 if x_i and x_j are related and 0 if they are not.

Definition (Adjacency matrix)

An adjacency matrix is a symmetric square matrix with $\{0,1\}$ entries where 1 or 0 at the (i,j)-th location indicates the i-th and the j-th vertices of a graph are adjacent (i.e., share an edge) or not.

▶ The diagonal entries of adjacency matrices take different values depending on different conventions.

Definition (Stochastic matrix)

A matrix $\mathbf{P} \in \mathbb{R}^{n \times p}$ is stochastic (also know as transition or probability) matrix if $\sum_{i} p_{ij} = 1$ for $0 \le p_{ij} \le 1$; while \mathbf{A} is doubly stochastic if $\sum_{i} p_{ij} = \sum_{j} p_{ij} = 1$.

Definition (Gaussian matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ is Gaussian if its entries $a_{lk} \sim \mathcal{N}\left(\mu, \sigma^2\right)$ for $l, k \in [p]$. That is, its entries are independent and identically distributed (i.i.d.) with mean μ & variance σ^2 according to the Gaussian distribution.

Definition (Fourier matrix)

A matrix $\mathbf{F} \in \mathbb{C}^{p \times p}$ is **Fourier matrix** if its entries

$$f_{lk} = \frac{1}{\sqrt{p}} e^{i2\pi lk/p}, \quad \text{for} \quad l, k \in [p], \ i = \sqrt{-1}.$$

Definition (Discrete Cosine Transform matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ is **Discrete Cosine Transform** (DCT) matrix if its entries

$$a_{lk} = \sqrt{\frac{2}{p}} \cos\left(\frac{\pi}{p}(l-1)\left(k-\frac{1}{2}\right)\right); 1 \le l \le p, \ 1 \le k \le p.$$

- ▶ The Fourier and DCT matrices are both orthogonal, i.e., $\mathbf{F}^H\mathbf{F} = \mathbf{F}\mathbf{F}^H = \mathbf{I}$, where $\mathbf{F}^H = \text{complex-conjugate}(\mathbf{F}^T)$.
- ▶ Both matrices are rarely stored since they have an implicit fast matrix-vector multiplication algorithm.

Definition (Hadamard matrix [4])

Let the indices $l,k\in[2^n]$ be defined as $l=\sum_{j=1}^n l_j 2^{j-1}+1,\quad k=\sum_{j=1}^n k_j 2^{j-1}+1.$ A matrix

 $\mathbf{H} = \mathbf{H}_n \in \mathbb{R}^{2^n \times 2^n}$ is a Hadamard matrix (or Hadamard transform) if

$$h_{lk} = \frac{1}{2^{n/2}} (-1)^{\sum_{j=1}^{n} k_j l_j}.$$

- ▶ The Hadamard matrix is orthogonal and self-adjoint, i.e., $\mathbf{H}_n = \mathbf{H}_n^T$.
- ► The Hadamard matrix is rarely stored since it has a fast matrix-vector multiplication algorithm that uses the recursive identity:

$$\mathbf{H}_n = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{H}_{n-1} & \mathbf{H}_{n-1} \\ \mathbf{H}_{n-1} & -\mathbf{H}_{n-1} \end{pmatrix}, \quad \mathbf{H}_0 = 1.$$

Definition (Toeplitz matrix [2])

Let a $\mathbf{t}=(t_1,t_2,\ldots,t_{2p-1})$ be fixed or drawn from a probability distribution $\mathcal{P}(\mathbf{t})$. Then $\mathbf{T}\in\mathbb{R}^{p\times p}$ is **Toeplitz** matrix if

$$\mathbf{T} = \begin{pmatrix} t_1 & t_2 & t_3 & \cdots & t_{p-1} & t_p \\ t_{p+1} & t_1 & t_2 & \cdots & t_{p-2} & t_{p-1} \\ t_{p+2} & t_{p+1} & t_1 & \cdots & t_{p-3} & t_{p-2} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ t_{2p-2} & t_{2p-3} & \cdots & \cdots & t_1 & t_2 \\ t_{2p-1} & t_{2p-2} & t_{2p-3} & \cdots & t_{p+1} & t_1 \end{pmatrix}.$$

Definition (Circulant matrix [8])

Let a $\mathbf{c}=(c_1,c_2,\ldots,c_p)$ be fixed or drawn from a probability distribution $\mathcal{P}(\mathbf{c})$, then $\mathbf{C}\in\mathbb{R}^{p\times p}$ is Circulant matrix if

$$\mathbf{C} = \begin{pmatrix} c_1 & c_p & \cdots & c_3 & c_2 \\ c_2 & c_1 & \cdots & c_4 & c_3 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_p & c_{p-1} & \cdots & c_2 & c_1 \end{pmatrix}.$$

Partial Fourier, Partial Toeplitz, Partial Circulant, ...

A partial Fourier, Toeplitz or Circulant matrix refers to a matrix consisting of a subset of the rows of a Fourier, Toeplitz or Circulant matrix, respectively.

- Fourier, Hadamard, Toeplitz and Circulant matrices are structured matrices. In addition, Toeplitz and Circulant matrices are banded.
- These matrices also have lower degrees-of-freedom as compared to a general matrix in $\mathbb{R}^{p \times p}$. Hence, computations revolving around these matrices are typically cheaper than the computation we need for a general matrix.
- Incident and adjacency matrices are often used in graph theory. They have important decompositional and computational properties.

Basic matrix definitions

Definition (Nullspace of a matrix)

The **nullspace** of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\text{null}(\mathbf{A})$) is defined as

$$\text{null}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^p \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

- ightharpoonup null(\mathbf{A}) is the set of vectors mapped to zero by \mathbf{A} .
- ightharpoonup null(\mathbf{A}) is the set of vectors orthogonal to the rows of \mathbf{A} .

Definition (Range of a matrix)

The range of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $\mathrm{range}(\mathbf{A})$) is defined as

$$\operatorname{range}(\mathbf{A}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^p\} \subseteq \mathbb{R}^n$$

ightharpoonup range(A) is the span of the columns (or the column space) of A.

Definition (Rank of a matrix)

The rank of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, (denoted by $rank(\mathbf{A})$) is defined as

$$rank(\mathbf{A}) = \mathbf{dim} (range(\mathbf{A}))$$

- $ightharpoonup \operatorname{rank}(\mathbf{A})$ is the maximum number of independent columns (or rows) of $\mathbf{A}_{r} \Rightarrow \operatorname{rank}(\mathbf{A}) < \min(n, p)$.
- $ightharpoonup \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T)$; and $\operatorname{rank}(\mathbf{A}) + \operatorname{dim}(\operatorname{null}(\mathbf{A})) = p$.

Matrix definitions contd.

Definition (Eigenvalues & Eigenvectors)

The vector $\mathbf x$ is an eigenvector of a square matrix $\mathbf A \in \mathbb R^{n \times n}$ if $\mathbf A \mathbf x = \lambda \mathbf x$ where $\lambda \in \mathbb R$ is called an eigenvalue of $\mathbf A$.

▶ A scales its eigenvectors by it eigenvalues.

Definition (Singular values & singular vectors)

For $\mathbf{A} \in \mathbb{R}^{n \times p}$ and *unit* vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^p$ if

$$\mathbf{A}\mathbf{v} = \sigma\mathbf{u}$$
 and $\mathbf{A}^T\mathbf{u} = \sigma\mathbf{v}$

then $\sigma \in \mathbb{R}$ ($\sigma \ge 0$) is a singular value of \mathbf{A} ; \mathbf{v} and \mathbf{u} are the right singular vector and the left singular vector respectively of \mathbf{A} .

Definition (Symmetric matrix)

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A} = \mathbf{A}^T$.

Lemma

The eigenvalues of a symmetric A are real.

Proof.

Assume
$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}, \ \mathbf{x} \in \mathbb{C}^p, \mathbf{x} \neq \mathbf{0}$$
, then $\overline{\mathbf{x}}^T \mathbf{A}\mathbf{x} = \overline{\mathbf{x}}^T (\mathbf{A}\mathbf{x}) = \overline{\mathbf{x}}^T (\lambda\mathbf{x}) = \lambda \sum_{i=1}^n |x_i|^2$ but $\overline{\mathbf{x}}^T \mathbf{A}\mathbf{x} = \overline{(\mathbf{A}\mathbf{x})}^T \mathbf{x} = \overline{(\lambda\mathbf{x})}^T \mathbf{x} = \overline{\lambda} \sum_{i=1}^n |x_i|^2 \Rightarrow \lambda = \overline{\lambda}$ i.e. $\lambda \in \mathbb{R}$

Matrix definitions contd.

Definition (Positive semidefinite & positive definite matrices)

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semidefinite (denoted $\mathbf{A} \succeq 0$) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$; while it is positive definite (denoted $\mathbf{A} \succ 0$) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$

- ▶ $\mathbf{A} \succeq 0$ iff all its eigenvalues are nonnegative i.e. $\lambda_{\min}(\mathbf{A}) \geq 0$.
- ▶ Similarly, $\mathbf{A} \succ 0$ iff all its eigenvalues are **positive** i.e. $\lambda_{\min}(\mathbf{A}) > 0$.
- ▶ **A** is negative semidefinite if $-\mathbf{A} \succeq 0$; while **A** is negative definite if $-\mathbf{A} \succ 0$.
- ▶ Semidefinite ordering of two *symmetric* matrices, **A** and **B**: $\mathbf{A} \succeq \mathbf{B}$ if $\mathbf{A} \mathbf{B} \succeq 0$.

Example (Matrix inequalities)

- 1. If $\mathbf{A} \succeq 0$ and $\mathbf{B} \succeq 0$, then $\mathbf{A} + \mathbf{B} \succeq 0$
- 2. If $\mathbf{A}\succeq\mathbf{B}$ and $\mathbf{C}\succeq\mathbf{D}$, then $\mathbf{A}+\mathbf{C}\succeq\mathbf{B}+\mathbf{D}$
- 3. If $\mathbf{B} \leq 0$ then $\mathbf{A} + \mathbf{B} \leq \mathbf{A}$
- 4. If $\mathbf{A} \succeq 0$ and $\alpha \geq 0$, then $\alpha \mathbf{A} \succeq 0$
- 5. If $\mathbf{A} \succ 0$, then $\mathbf{A}^2 \succ 0$
- 6. If $\mathbf{A} \succ 0$, then $\mathbf{A}^{-1} \succ 0$

Matrix decompositions

Definition (Eigenvalue decomposition)

The eigenvalue decomposition of a square matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$, is given by:

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

- ightharpoonup the columns of $\mathbf{X} \in \mathbb{R}^{n \times n}$, i.e. \mathbf{x}_i , are eigenvectors of \mathbf{A}
- $lack \Lambda = {f diag}\,(\lambda_1,\lambda_2,\ldots,\lambda_n)$ where λ_i (also denoted $\lambda_i({f A})$) are eigenvalues of ${f A}$
- ► A matrix that admits this decomposition is therefore called diagonalizable matrix

Eigendecomposition of symmetric matrices

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, the decomposition becomes $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T$ where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is unitary (or orthonormal), i.e. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ and λ_i are real

If we order $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, $\lambda_i(\mathbf{A})$ becomes the i^{th} largest eigenvalue of \mathbf{A} .

Definition (Determinant of a matrix)

The **determinant** of a square matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$, denoted by $\det(\mathbf{A})$, is given by:

$$\det(\mathbf{A}) = \prod_{i=1}^{p} \lambda_i$$

where λ_i are eigenvalues of \mathbf{A} .

Matrix decompositions contd

Definition (Singular value decomposition)

The singular value decomposition (SVD) of a matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

- ▶ $\operatorname{rank}(\mathbf{A}) = r \leq \min(n, p)$ and σ_i is the i^{th} singular value of \mathbf{A}
- $ightharpoonup \mathbf{u}_i$ and \mathbf{v}_i are the $i^{ extsf{th}}$ left and right singular vectors of \mathbf{A} respectively
- $\mathbf{V} \in \mathbb{R}^{n imes r}$ and $\mathbf{V} \in \mathbb{R}^{p imes r}$ are unitary matrices (i.e. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$)
- $ightharpoonup \Sigma = \mathbf{diag}\left(\sigma_1, \sigma_2, \dots, \sigma_r\right) \text{ where } \sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0$
- \mathbf{v}_i are eigenvectors of $\mathbf{A}^T \mathbf{A}$; $\sigma_i = \sqrt{\lambda_i \left(\mathbf{A}^T \mathbf{A} \right)}$ (and $\lambda_i \left(\mathbf{A}^T \mathbf{A} \right) = 0$ for i > r) since $\mathbf{A}^T \mathbf{A} = \left(\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \right)^T \left(\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \right) = \left(\mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T \right)$
- $\begin{array}{l} \mathbf{u}_i \text{ are eigenvectors of } \mathbf{A}\mathbf{A}^T; \ \sigma_i = \sqrt{\lambda_i \left(\mathbf{A}\mathbf{A}^T\right)} \ \left(\text{and } \lambda_i \left(\mathbf{A}\mathbf{A}^T\right) = 0 \ \text{for } i > r\right) \text{ since } \\ \mathbf{A}\mathbf{A}^T = \left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\right) \left(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\right)^T = \left(\mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T\right) \end{aligned}$

Matrix decompositions contd

Definition (LU)

The **LU factorization** of a nonsingular square matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

$$A = PLU$$

where P is a permutation matrix¹, L is lower triangular and U is upper triangular.

Definition (QR)

The **QR factorization** of any matrix, $\mathbf{A} \in \mathbb{R}^{n \times p}$, is given by:

$$A = QR$$

where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is an orthonormal matrix, i.e. $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$, and $\mathbf{R} \in \mathbb{R}^{n \times p}$ is upper triangular.

Definition (Cholesky)

The Cholesky factorization of a positive definite and symmetric matrix, $\mathbf{A} \in \mathbb{R}^{p \times p}$, is given by:

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

where ${\bf L}$ is a lower triangular matrix with positive entries on the diagonal.

¹ A matrix $P \in \mathbb{R}^{p \times p}$ is **permutation** if it has only one 1 in each row and each column.

Complexity of matrix operations

Definition (floating-point operation)

A **floating-point operation** (flop) is one addition, subtraction, multiplication, or division of two floating-point numbers.

Table: Complexity examples: vector are in \mathbb{R}^p , matrices in $\mathbb{R}^{n \times p}$, $\mathbb{R}^{p \times m}$ or $\mathbb{R}^{p \times p}$ [5]

Operation	Complexity	Remarks
vector addition	p flops	
vector inner product	2p-1 flops	or $pprox 2p$ for p large
matrix-vector product	n(2p-1) flops	or $pprox 2np$ for p large
		$2m$ if ${f A}$ is sparse with m nonzeros
matrix-matrix product	mn(2p-1) flops	or $pprox 2mnp$ for p large
		much less if ${f A}$ is sparse 1
LU decomposition	$\frac{2}{3}p^3 + 2p^2$ flops	or $\frac{2}{3}p^3$ for p large much less if ${\bf A}$ is sparse 1
Cholesky decomposition	$\frac{1}{3}p^3 + 2p^2$ flops	or $\frac{1}{3}p^3$ for p large much less if ${\bf A}$ is sparse 1
	3	much less if ${f A}$ is sparse ¹
SVD	$C_1 n^2 p + C_2 p^3$ flops	$C_1 = 4$, $C_2 = 22$ for R-SVD algo.
Determinant	complexity of SVD	

¹ Complexity depends on p, no. of nonzeros in ${\bf A}$ and the sparsity pattern.

Computing eigenvalues and eigenvectors

- o There are various algorithms to compute eigenpairs of matrices [10].
- o One can choose an algorithm depending on the setting.
- o Difference considerations include computational complexity, number of eigenvalues or eigenvectors needed.

Power Method

Starting with an initial vector \mathbf{x}^0 , $\mathbf{x}^{k+1} = \frac{\mathbf{A}\mathbf{x}^k}{\|\mathbf{A}\mathbf{x}^k\|_2}$ converges to the leading eigenvector of the matrix \mathbf{A} under certain conditions. Moreover, $\lambda^k = \frac{\mathbf{x}^{k*}\mathbf{A}\mathbf{x}^k}{\mathbf{x}^{k*}\mathbf{x}^k}$ converges to the leading eigenvalue, i.e., the one with largest absolute value.

- o Power method only uses matrix-vector multiplications and normalizations.
- \circ Useful when ${f A}$ is a large matrix with sparse entries as it does not require singular value matrix decomposition
- o Applied in the original PageRank algorithm of Google.

Inverse Power Method

Knowing an upper bound α on the largest eigenvalue of A, apply power method to $\mathbf{A} - \alpha \mathbf{I}$, i.e., iterate $\mathbf{x}^{k+1} = \frac{(\mathbf{A} - \alpha \mathbf{I})\mathbf{x}^k}{\|(\mathbf{A} - \alpha \mathbf{I})\mathbf{x}^k\|_2}$. Then, $\lambda^k = \frac{\mathbf{x}^{k^*}\mathbf{A}\mathbf{x}^k}{\mathbf{x}^{k^*}\mathbf{x}^k}$ converges to the smallest eigenvalue of \mathbf{A} .

Computing eigenvalues and eigenvectors

Shifted Power Method

A variant of the power method is the shifted power method. Here, we choose a scalar s and apply the power method to $\mathbf{A}-s\mathbf{I}$. The parameter s shifts the eigenvalue λ of \mathbf{A} to $\lambda-s$ of $\mathbf{A}-s\mathbf{I}$. If the shift is chosen appropriately, the algorithm can converge faster to the leading eigenvalue.

Remark: o Large-scale problems need newer methods that control storage in addition to arithmetic costs.

Randomized Shifted Power Method

When the storage is the overriding concern, we can run the shifted power method with a random starting vector.

Costs (Randomized shifted power method for symmetric matrices)

Let $M \in \mathbb{S}_n$ a symmetric matrix. For each $\epsilon \in (0,1]$ and $\delta \in (0,1]$, the shifted power method computes a unit vector $u \in \mathbb{F}^n$ that satisfies:

$$u^*Mu \leq \lambda_{\min}(M) + \epsilon||M||$$
 with probability at least $1 - \delta$

after $q \geq \frac{1}{2} + \epsilon^{-1} \log(n/\delta^2)$ iterations. The arithmetic cost is $\mathcal{O}(q)$ matrix-vector multiplies with M and $\mathcal{O}(qn)$ extra operations. The working storage is about 2n numbers.

Computing eigenvalues and eigenvectors

o In case storage is not the issue, we can use the randomized Lanczos method.

Lanczos algorithm goal

Given a symmetric matrix $\mathbf{A} \in \mathbb{S}_n$ with eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$, and the associated eigenvectors u_1, \ldots, u_n , Lanczos algorithms finds approximations for the k largest eigenvalues of \mathbf{A} and its associated eigenvectors, where $k \ll n$.

Randomized Lanczos algorithm

- $\circ \ \mathsf{Select} \ \mathsf{a} \ \mathsf{random} \ \mathsf{vector} \ v, \ \mathsf{construct} \ \mathsf{a} \ \mathsf{Krylov} \ \mathsf{subspace}, \ \mathcal{K}(\mathbf{A}, v, k) = \mathrm{span}\{v, \mathbf{A}v, \mathbf{A}^2v, \dots, \mathbf{A}^{k-1}v\}.$
- \circ Project ${f A}$ into this Krylov subspace, $T=\operatorname{proj}_{{m \mathcal K}}{f A}$
- \circ Use the eigenvalues and vectors of T as approximations to those of A. In matrix form:

$$\begin{split} & \boldsymbol{K}_k = [\boldsymbol{v} \ \mathbf{A} \boldsymbol{v} \ \dots \mathbf{A}^{k-1} \boldsymbol{v}] \in \mathbb{R}^{n \times k} \\ & \boldsymbol{Q}_k = [\boldsymbol{q}_1 \ \boldsymbol{q}_2 \ \dots \boldsymbol{q}_k] \leftarrow \mathsf{qr}(\boldsymbol{K}_k) \\ & \boldsymbol{T}_k = \boldsymbol{Q}_t^T \mathbf{A} \boldsymbol{Q}_k \in \mathbb{R}^{k \times k} \end{split}$$

Computing eigenvalues and eigenvectors

Costs (Randomized Lanczos algorithm)

Let $M \in \mathbb{S}_n$. For $\epsilon \in (0,1]$ and $\delta \in (0,0.5]$, the randomized Lanczos method computes a unit vector $u \in \mathbb{F}^n$ that satisfies:

$$u^*Mu \le \lambda_{\min}(M) + \frac{\epsilon}{8}||M||$$
 with probability at least $1 - 2\delta$

after $q \geq \frac{1}{2} + \epsilon^{-1/2} \log(n/\delta^2)$ iterations. The arithmetic cost is at most q matrix-vector multiplies with M and $\mathcal{O}(qn)$ extra operations. The working storage is $\mathcal{O}(qn)$.

Storage Optimal (double loop) Randomized Lanczos [12]

More efficiently one can run the for loop in the Lanczos algorithm twice:

- ightharpoonup The first time to find the weigth vector u.
- ightharpoonup The second to generate the eigenvector v using the weights found in u.

This methods focus on regenerating the Lanczos vectors instead of storing them to construct the approximate eigenvector. It takes the weighted average in the end.

With this we can change the storing cost to $\mathcal{O}(q+n)$ instead of $\mathcal{O}(qn)$ as previously stated.

Linear operators

- o Matrices are often given in an **implicit** form.
- o It is convenient to think of them as *linear operators*.

Proposition (Linear operators & matrices)

Any linear operator in finite dimensional spaces can be represented as a matrix.

Example

Given matrices A, B and X with compatible dimensions and the *linear operator* $\mathcal{M}: \mathbb{R}^{n \times p} \to \mathbb{R}^{np}$, a linear operator can define the following implicit mapping

$$\mathcal{M}(\mathbf{X}) \coloneqq (\mathbf{B}^T \otimes \mathbf{A}) \operatorname{vec}(\mathbf{X}) = \operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{B}),$$

where \otimes is the Kronecker product and $\mathrm{vec}:\mathbb{R}^{n\times p}\to\mathbb{R}^{np}$ is yet another linear operator that vectorizes its entries.

Note: Clearly, it is more efficient to compute $vec(\mathbf{AXB})$ than to perform the *matrix multiplication* $(\mathbf{B}^T \otimes \mathbf{A}) \operatorname{vec}(\mathbf{X})$.

Matrix norms

Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an $n \times p$ matrix is a map $\|\cdot\|: \mathbb{R}^{n \times p} \to \mathbb{R}$ such that for all matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p}$ and scalar $\lambda \in \mathbb{R}$

- (a) $\|\mathbf{A}\| \ge 0$ for all $\mathbf{A} \in \mathbb{R}^{n \times p}$ nonnegativity
- (b) $\|\mathbf{A}\| = 0$ if and only if $\mathbf{A} = \mathbf{0}$ definitiveness
- (c) $\|\lambda \mathbf{A}\| = |\lambda| \|\mathbf{A}\|$ homogeniety
- (d) $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$ triangle inequality

Definition (Matrix inner product)

Matrix inner product is defined as follows

$$\langle \mathbf{A}, \mathbf{B}
angle = \mathsf{trace}\left(\mathbf{A}\mathbf{B}^T
ight)$$
 .

 \triangleright Similar to vector ℓ_q -norms, we have Schatten q-norms for matrices.

Definition (Schatten q-norms)

$$\|\mathbf{A}\|_q := \left(\sum_{i=1}^p (\sigma(\mathbf{A})_i)^q\right)^{1/q}$$
, where $\sigma(\mathbf{A})_i$ is the i^{th} singular value of \mathbf{A} .

Example (with
$$r = \min\{n, p\}$$
 and $\sigma_i = \sigma(\mathbf{A})_i$)
$$\|\mathbf{A}\|_1 = \|\mathbf{A}\|_* := \sum_{i=1}^r \sigma_i \qquad \equiv \operatorname{trace}\left(\sqrt{\mathbf{A}^T\mathbf{A}}\right) \quad (\mathsf{Nuclear/trace})$$

$$\|\mathbf{A}\|_2 = \|\mathbf{A}\|_F := \sqrt{\sum_{i=1}^r (\sigma_i)^2} \equiv \sqrt{\sum_{i=1}^n \sum_{j=1}^p |a_{ij}|^2} \quad (\mathsf{Frobenius})$$

$$\|\mathbf{A}\|_{\infty} = \|\mathbf{A}\| := \max_{i=1,\dots,r} \{\sigma_i\} \equiv \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad (\mathsf{Spectral/matrix})$$

Problem (Rank-*r* approximation)

 $\label{eq:constraint} \mathsf{Find} \quad \mathop{\arg\min}_{\mathbf{X}} \ \|\mathbf{X} - \mathbf{Y}\|_F \quad \mathsf{subject to:} \quad \mathop{\mathrm{rank}}(\mathbf{X}) \leq r.$

Problem (Rank-r approximation)

Solution (Eckart-Young-Mirsky Theorem)

$$\begin{split} \underset{\mathbf{X}: \mathrm{rank}(\mathbf{X}) \leq r}{\arg\min} & \|\mathbf{X} - \mathbf{Y}\|_F = \underset{\mathbf{X}: \mathrm{rank}(\mathbf{X}) \leq r}{\arg\min} & \|\mathbf{X} - \mathbf{U}\boldsymbol{\Sigma}_{\mathbf{Y}}\mathbf{V}^T\|_F, \quad (\mathsf{SVD}) \\ &= \underset{\mathbf{X}: \mathrm{rank}(\mathbf{X}) \leq r}{\arg\min} & \|\mathbf{U}^T\mathbf{X}\mathbf{V} - \boldsymbol{\Sigma}_{\mathbf{Y}}\|_F, \quad (\mathsf{unit. invar. of } \|\cdot\|_F) \\ &= \mathbf{U} \left(\underset{\mathbf{Z}: \mathrm{rank}(\mathbf{Z}) \leq r}{\arg\min} & \|\mathbf{Z} - \boldsymbol{\Sigma}_{\mathbf{Y}}\|_F\right) \mathbf{V}^T, \quad (\mathsf{Let } \mathbf{Z} = \mathbf{U}\mathbf{X}\mathbf{V}^T) \\ &= \mathbf{U}H_r\left(\boldsymbol{\Sigma}_{\mathbf{Y}}\right) \mathbf{V}^T, \quad (r\text{-sparse approx. of the diagonal entries}) \end{split}$$

Singular value hard thresholding operator H_r performs the best rank-r approximation of a matrix via sparse approximation: We keep the r largest singular values of the matrix and set the rest to zero.

Definition (Operator norm)

The operator norm between ℓ_q and ℓ_r $(1 \le q, r \le \infty)$ of a matrix **A** is defined as

$$\|\mathbf{A}\|_{q\to r} = \sup_{\|\mathbf{x}\|_q < 1} \|\mathbf{A}\mathbf{x}\|_r$$

Problem

Show that $\|\mathbf{A}\|_{2\to 2} = \|\mathbf{A}\|$ i.e., ℓ_2 to ℓ_2 operator norm is the spectral norm.

Solution

$$\begin{split} \|\mathbf{A}\|_{2\to 2} &= \sup_{\|\mathbf{x}\|_2 \le 1} \|\mathbf{A}\mathbf{x}\|_2 = \sup_{\|\mathbf{x}\|_2 \le 1} \|\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T\mathbf{x}\|_2 \quad \text{(using SVD of } \mathbf{A} \text{)} \\ &= \sup_{\|\mathbf{x}\|_2 \le 1} \|\boldsymbol{\Sigma}\mathbf{V}^T\mathbf{x}\|_2 \quad \text{(rotational invariance of } \|\cdot\|_2 \text{)} \\ &= \sup_{\|\mathbf{z}\|_2 \le 1} \|\boldsymbol{\Sigma}\mathbf{z}\|_2 \quad \text{(letting } \mathbf{V}^T\mathbf{x} = \mathbf{z} \text{)} \\ &= \sup_{\|\mathbf{z}\|_2 \le 1} \sqrt{\sum_{i=1}^{\min(n,p)} \sigma_i^2 z_i^2} = \sigma_{\max} = \|\mathbf{A}\| \end{split}$$

Other examples

▶ The $\|\mathbf{A}\|_{\infty\to\infty}$ (norm induced by ℓ_{∞} -norm) also denoted $\|\mathbf{A}\|_{\infty}$, is the max-row-sum norm:

$$\|\mathbf{A}\|_{\infty \to \infty} := \sup\{\|\mathbf{A}\mathbf{x}\|_{\infty} \mid \|\mathbf{x}\|_{\infty} \le 1\} = \max_{i=1,\dots,n} \sum_{j=1}^{p} |a_{ij}|.$$

▶ The $\|\mathbf{A}\|_{1\to 1}$ (norm induced by ℓ_1 -norm) also denoted $\|\mathbf{A}\|_1$, is the max-column-sum norm:

$$\|\mathbf{A}\|_{1\to 1} := \sup\{\|\mathbf{A}\mathbf{x}\|_1 \mid \|\mathbf{x}\|_1 \le 1\} = \max_{i=1,\dots,p} \sum_{j=1}^n |a_{ij}|.$$

Useful relation for operator norms

The following identity holds

$$\|\mathbf{A}\|_{q \to r} := \max_{\|\mathbf{z}\|_r \le 1, \|\mathbf{x}\|_q = 1} \langle \mathbf{z}, \mathbf{A} \mathbf{x} \rangle = \max_{\|\mathbf{x}\|_{q'} \le 1, \|\mathbf{z}\|_{r'} = 1} \langle \mathbf{A}^T \mathbf{z}, \mathbf{x} \rangle =: \|\mathbf{A}^T\|_{q' \to r'}$$

whenever 1/q + 1/q' = 1 = 1/r + 1/r'.

Example

- 1. $\|\mathbf{A}\|_{\infty \to 1} = \|\mathbf{A}^T\|_{1 \to \infty}$.
- 2. $\|\mathbf{A}\|_{2\to 1} = \|\mathbf{A}^T\|_{2\to\infty}$.
- 3. $\|\mathbf{A}\|_{\infty \to 2} = \|\mathbf{A}^T\|_{1 \to 2}$.

Computation of operator norms

- ► The computation of some **operator norms** is NP-hard* [4]; these include:

 - 1. $\|\mathbf{A}\|_{\infty \to 1}$ 2. $\|\mathbf{A}\|_{2 \to 1}$
 - 3. $\|\mathbf{A}\|_{\infty \to 2}$
- ▶ But some of them are approximable [11]; these include
 - 1. $\|\mathbf{A}\|_{\infty \to 1}$ (via Gronthendieck factorization)
 - 2. $\|\mathbf{A}\|_{\infty \to 2}$ (via Pietzs factorization)
- *: See Recitation 1.

Matrix & vector norm analogy

Vectors	$\ \mathbf{x}\ _1$	$\ \mathbf{x}\ _2$	$\ \mathbf{x}\ _{\infty}$
Matrices	$\ \mathbf{X}\ _*$	$\ \mathbf{X}\ _F$	$\ \mathbf{X}\ $

Definition (Dual of a matrix)

The dual norm of $\mathbf{A} \in \mathbb{R}^{n \times p}$ is defined as

$$\|\mathbf{A}\|^* = \sup \left\{ \operatorname{trace} \left(\mathbf{A}^T \mathbf{X} \right) \mid \|\mathbf{X}\| \le 1 \right\}.$$

Matrix & vector dual norm analogy

Vector primal norm	$\ \mathbf{x}\ _1$	$\ \mathbf{x}\ _2$	$\ \mathbf{x}\ _{\infty}$
Vector dual norm	$\ \mathbf{x}\ _{\infty}$	$\ \mathbf{x}\ _2$	$\ \mathbf{x}\ _1$
Matrix primal norm	$\ \mathbf{X}\ _*$	$\ \mathbf{X}\ _F$	$\ \mathbf{X}\ $
Matrix dual norm	$\ \mathbf{X}\ $	$\ \mathbf{X}\ _F$	$\ \mathbf{X}\ _*$

Definition (Nuclear norm computation)

$$\begin{split} \|\mathbf{A}\|_* &:= \|\sigma(\mathbf{A})\|_1 \quad \text{where } \sigma(\mathbf{A}) \text{ is a vector of singular values of } \mathbf{A} \\ &= \min_{\mathbf{U}, \mathbf{V}: \mathbf{A} = \mathbf{U} \mathbf{V}^H} \|\mathbf{U}\|_F \|\mathbf{V}\|_F \\ &= \min_{\mathbf{U}, \mathbf{V}: \mathbf{A} = \mathbf{U} \mathbf{V}^H} \frac{1}{2} \left(\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2 \right) \end{split}$$

Additional useful properties are below:

- Nuclear vs. Frobenius: $\|\mathbf{A}\|_F \leq \|\mathbf{A}\|_* \leq \sqrt{\operatorname{rank}(\mathbf{A})} \cdot \|\mathbf{A}\|_F$
- ▶ Hölder for matrices: $|\langle \mathbf{A}, \mathbf{B} \rangle| \leq ||\mathbf{A}||_p ||\mathbf{B}||_q$, when $\frac{1}{n} + \frac{1}{n} = 1$
- We have

 - 1. $\|\mathbf{A}\|_{2\to 2} \le \|\mathbf{A}\|_F$ 2. $\|\mathbf{A}\|_{2\to 2}^2 \le \|\mathbf{A}\|_{1\to 1} \|\mathbf{A}\|_{\infty\to\infty}$
 - 3. $\|\mathbf{A}\|_{2}^{2} \le \|\mathbf{A}\|_{1 \to 1}$ when **A** is self-adjoint.

Linear systems

Problem (Solving a linear system)

Which is the best method for solving the linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
?

Solving a linear system via optimization

To find a solution to the linear system, we can also solve the optimization problem

$$\min_{\mathbf{x}} f_{\mathbf{A}, \mathbf{b}}(\mathbf{x}) := \frac{1}{2} \langle \mathbf{A} \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle$$

which is seen to have a solution satisfying $\mathbf{A}\mathbf{x} = \mathbf{b}$ by solving $\nabla_{\mathbf{x}} f_{\mathbf{A},\mathbf{b}}(\mathbf{x}) = 0$.

- ▶ $f_{A,b}$ is a quadratic function with **Lipschitz-gradient** (L = ||A||).
- If **A** is a $p \times p$ symmetric positive definite matrix, (i.e., $\mathbf{A} = \mathbf{A}^T \succ 0$), $f_{\mathbf{A}}$ is also **strongly convex** ($\mu = \lambda_1(\mathbf{A})$, the smallest eigenvalue of **A**).
- ▶ if A is not symmetric, but full column rank, we can consider the system

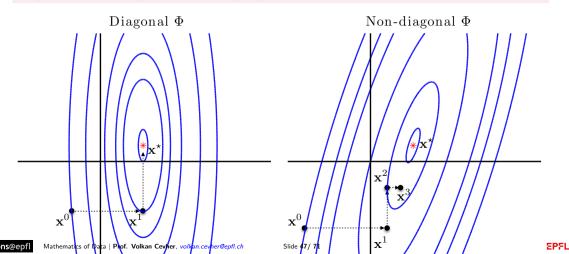
$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

which can be seen as: $\Phi x = y$ where Φ is symmetric and positive definite.

Linear systems

Remark

If Φ is diagonal and positive definite, given a starting point $\mathbf{x}^0 \in \text{dom}(f)$, successive minimization of $f_{\Phi,\mathbf{y}}(\mathbf{x})$ along the coordinate axes yield \mathbf{x}^* is at most p steps.



How can we adapt to the geometry of Φ ?

Conjugate gradients method - Φ symmetric and positive definite

Generate a set of *conjugate* directions $\{\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^{p-1}\}$ such that

$$\langle \mathbf{p}^i, \mathbf{\Phi} \mathbf{p}^j \rangle = 0$$
 for all $i \neq j$ (which also implies linear independence).

Successively minimize $f_{\Phi,\mathbf{y}}$ along the individual conjugate directions. Let

$$\mathbf{r}^k = \mathbf{\Phi} \mathbf{x}^k - \mathbf{y}$$
 and $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{p}^k$,

where α_k is the minimizer of $f_{\Phi,\mathbf{y}}(\mathbf{x})$ along $\mathbf{x}^k + \alpha \mathbf{p}^k$, i.e.,

$$lpha_k = -rac{\langle \mathbf{r}^k, \mathbf{p}^k
angle}{\langle \mathbf{p}^k, \mathbf{\Phi} \mathbf{p}^k
angle}$$

Theorem

For any $\mathbf{x}^0 \in \mathbb{R}^p$ the sequence $\{\mathbf{x}^k\}$ generated by the conjugate directions algorithm converges to the solution \mathbf{x}^* of the linear system in at most p steps.

Intuition

The conjugate directions adapt to the geometry of the problem, taking the role of the canonical directions when Φ is a generic symmetric positive definite matrix.

Intuition

The conjugate directions adapt to the geometry of the problem, taking the role of the canonical directions when Φ is a generic symmetric positive definite matrix.

Back to diagonal

For a generic symmetric positive definite Φ , let us consider the variable $\bar{\mathbf{x}} := \mathbf{S}^{-1}\mathbf{x}$, with

$$\mathbf{S} = \left[\mathbf{p}^0, \dots, \mathbf{p}^{p-1}\right]$$

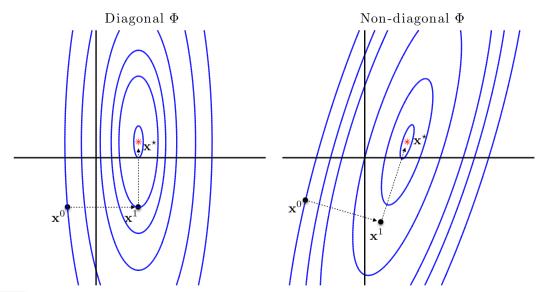
where $\{\mathbf{p}^k\}$ are the conjugate directions with respect to Φ . $f_{\Phi,\mathbf{y}}(\mathbf{x})$ now becomes

$$\bar{f}_{\mathbf{\Phi},\mathbf{y}}(\bar{\mathbf{x}}) := f_{\mathbf{\Phi},\mathbf{y}}(\mathbf{S}\bar{\mathbf{x}}) = \frac{1}{2} \langle \bar{\mathbf{x}}, (\mathbf{S}^T \mathbf{\Phi} \mathbf{S}) \bar{\mathbf{x}} \rangle - \langle \mathbf{S}^T \mathbf{y}, \bar{\mathbf{x}} \rangle.$$

By the conjugacy property, $\langle \mathbf{p}^i, \mathbf{\Phi} \mathbf{p}^j \rangle = 0$, $\forall i \neq j$, the matrix $\mathbf{S}^T \mathbf{\Phi} \mathbf{S}$ is diagonal. Therefore, we can find the minimum of $\bar{f}(\bar{\mathbf{x}})$ in at most p steps along the canonical directions in $\bar{\mathbf{x}}$ space, which are the $\{\mathbf{p}^k\}$ directions in \mathbf{x} space.

Conjugate directions naturally adapt to the linear operator

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch



Theorem

For any $\mathbf{x}^0 \in \mathbb{R}^p$ the sequence $\{\mathbf{x}^k\}$ generated by the conjugate directions algorithm converges to the solution \mathbf{x}^* of the linear system in at most p steps.

Proof.

Since $\{\mathbf{p}^k\}$ are linearly independent, they span \mathbb{R}^p . Therefore, we can write

$$\mathbf{x}^{\star} - \mathbf{x}^{0} = a_0 \mathbf{p}^{0} + a_1 \mathbf{p}^{1} + \dots + a_{p-1} \mathbf{p}^{p-1}$$

for some values of the coefficients a_k . By multiplying on the left by $(\mathbf{p}^k)^T \mathbf{\Phi}$ and using the conjugacy property, we obtain

$$a_k = \frac{\langle \mathbf{p}^k, \mathbf{\Phi}(\mathbf{x}^* - \mathbf{x}^0) \rangle}{\langle \mathbf{p}^k, \mathbf{\Phi}\mathbf{p}^k \rangle}.$$

Since $\mathbf{x}^k = \mathbf{x}^{k-1} + \alpha_{k-1}\mathbf{p}^{k-1}$, we have $\mathbf{x}^k = \mathbf{x}^0 + \alpha_0\mathbf{p}^0 + \alpha_1\mathbf{p}^1 + \dots + \alpha_{k-1}\mathbf{p}^{k-1}$. By premultiplying by $(\mathbf{p}^k)^T \Phi$ and using the conjugacy property, we obtain $\langle \mathbf{p}^k, \Phi(\mathbf{x}^k - \mathbf{x}^0) \rangle = 0$ which implies

$$\langle \mathbf{p}^k, \mathbf{\Phi}(\mathbf{x}^{\star} - \mathbf{x}^0) \rangle = \langle \mathbf{p}^k, \mathbf{\Phi}(\mathbf{x}^{\star} - \mathbf{x}^k) \rangle = \langle \mathbf{p}^k, \mathbf{y} - \mathbf{\Phi}\mathbf{x}^k) \rangle = -\langle \mathbf{p}^k, \mathbf{r}^k \rangle$$

so that $a_k = -\frac{\langle \mathbf{p}^k, \mathbf{r}^k \rangle}{\langle \mathbf{p}^k, \mathbf{p}^k \rangle} = \alpha_k$.

How can we efficiently generate a set of conjugate directions?

Iteratively generate the new descent direction \mathbf{p}^k from the previous one:

$$\mathbf{p}^k = -\mathbf{r}^k + \beta_k \mathbf{p}^{k-1}$$

For ensuring conjugacy $\langle \mathbf{p}^k, \mathbf{\Phi} \mathbf{p}^{k-1} \rangle = 0$, we need to choose β_k as

$$\beta_k = \frac{\langle \mathbf{r}^k, \mathbf{\Phi} \mathbf{p}^{k-1} \rangle}{\langle \mathbf{p}^{k-1}, \mathbf{\Phi} \mathbf{p}^{k-1} \rangle} \ .$$

Lemma

The directions $\{\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^p\}$ form a conjugate directions set.

Conjugate gradients (CG) method

- 1 Initialization:
 - **1.a** Choose $\mathbf{x}^0 \in \text{dom}(f)$ arbitrarily as a starting point.
 - **1.b** Set $\mathbf{r}^0 = \mathbf{\Phi} \mathbf{x}^0 \mathbf{y}, \ \mathbf{p}^0 = -\mathbf{r}^0, \ k = 0.$
- **2.** While $\mathbf{r}^k \neq \mathbf{0}$, generate a sequence $\{\mathbf{x}^k\}_{k \geq 0}$ as:

$$\begin{array}{ll} \alpha_k & = -\frac{\langle \mathbf{r}^k, \mathbf{p}^k \rangle}{\langle \mathbf{p}^k, \mathbf{\Phi} \mathbf{p}^k \rangle} \\ \mathbf{x}^{k+1} & = \mathbf{x}^k + \alpha_k \mathbf{p}^k \\ \mathbf{r}^{k+1} & = \mathbf{\Phi} \mathbf{x}^{k+1} - \mathbf{y} \\ \beta_{k+1} & = \frac{\langle \mathbf{r}^{k+1}, \mathbf{\Phi} \mathbf{p}^k \rangle}{\langle \mathbf{p}^k, \mathbf{\Phi} \mathbf{p}^k \rangle} \\ \mathbf{p}^{k+1} & = -\mathbf{r}^{k+1} + \beta_{k+1} \mathbf{p}^k \\ k & = k+1 \end{array}$$

Theorem

Since the directions $\{\mathbf{p}^0, \mathbf{p}^1, \dots, \mathbf{p}^k\}$ are conjugate, CG converges in at most p steps.

Other properties of the conjugate gradient method

Theorem

If Φ has only r distinct eigenvalues, then the CG iterations will terminate at the solution in at most r iterations.

Theorem

If Φ has eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_p$, we have that

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} \le \left(\frac{\lambda_{p-k} - \lambda_1}{\lambda_{p-k} + \lambda_1}\right) \|\mathbf{x}^0 - \mathbf{x}^{\star}\|_{\mathbf{\Phi}},$$

where the local norm is given by $\|\mathbf{x}\|_{\mathbf{\Phi}} = \sqrt{\mathbf{x}^T \mathbf{\Phi} \mathbf{x}}$.

Theorem

Conjugate gradients algorithm satisfy the following iteration invariant for the solution of $\Phi \mathbf{x} = \mathbf{y}$

$$\|\mathbf{x}^{k+1} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}} \leq 2 \left(\frac{\sqrt{\kappa(\mathbf{\Phi})} - 1}{\sqrt{\kappa(\mathbf{\Phi})} + 1} \right)^{k} \|\mathbf{x}^{0} - \mathbf{x}^{\star}\|_{\mathbf{\Phi}},$$

where the condition number of Φ is defined as $\kappa(\Phi) := \|\Phi\| \|\Phi^{-1}\| = \frac{\lambda_p}{\lambda_1}$.

Matrix perturbation inequalities

▶ In the theorems below $A, B \in \mathbb{R}^{p \times p}$ are symmetric positive semi-definite matrices with spectra $\{\lambda_i(A)\}_{i=1}^p$ and $\{\lambda_i(B)\}_{i=1}^p$ where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$.

Theorem (Lidskii inequality)

$$\lambda_{i_{1}}\left(\mathbf{A}+\mathbf{B}\right)+\cdots+\lambda_{i_{n}}\left(\mathbf{A}+\mathbf{B}\right)\leq\lambda_{i_{1}}\left(\mathbf{A}\right)+\cdots\lambda_{i_{n}}\left(\mathbf{A}\right)+\lambda_{i_{1}}\left(\mathbf{B}\right)+\cdots+\lambda_{i_{n}}\left(\mathbf{B}\right),$$

for any $1 \le i_1 \le \cdots \le i_n \le p$.

Theorem (Weyl inequality)

$$\lambda_{i+j-1}\left(\mathbf{A}+\mathbf{B}\right) \leq \lambda_{i}\left(\mathbf{A}\right) + \lambda_{j}\left(\mathbf{B}\right), \quad \textit{for any } i,j \geq 1 \quad \textit{and} \quad i+j-1 \leq p.$$

Theorem (Interlacing property)

Let
$$A_n = A(1:n,1:n)$$
, then

$$\lambda_{n+1}\left(\mathbf{A}_{n+1}\right) \leq \lambda_{n}\left(\mathbf{A}_{n}\right) + \lambda_{n}\left(\mathbf{A}_{n+1}\right)$$
 for $n = 1, \dots, p$.

- ▶ These inequalities **hold** in the more general setting when λ_i are replaced by σ_i .
- ▶ The list goes on to include Wedin bounds, Wielandt-Hoffman bounds and so on.
- ▶ More on such inequalities can be found in Terry Tao's blog (254A, Notes 3a).

*Tensors

- 1. Basic tensor definitions
- 2. Notation and preliminaries
- 3. Tensors decompositions
- 4. Tensor rank
- 5. Banach's result on supersymmetric tensors
- *: PhD material

Basic definitions

o Tensors provide natural and concise mathematical representations of data.

Definition (Tensor)

An **order** m tensor in p-**dimensional** space is a mathematical object that has p indices and p^m components and obeys certain transformation rules.

- ▶ In the literature, rank is used interchangeably with order, i.e., an order-k tensor is also referred to as kth-rank tensor.
- We often use order instead of rank so that it is not confused with the rank of a tensor.
- ► Furthermore, mode or way is also used to refer to the **order** of a tensor.
- ► Tensors are multidimensional arrays and are a generalization of:
 - 1. scalars tensors with no indices: i.e., order zero tensor.
 - 2. vectors tensors with exactly one index; i.e., order one tensor.
 - 3. matrices tensors with exactly two indices; i.e., order two tensor.
- A third-order tensor has exactly three indices.
- ▶ A higher-order tensor has greater than two indices; i.e., a tensor of order > 2.

Notation & preliminaries

Notation & preliminaries

- ▶ The notation conforms to [7] which is the main reference for this material.
- ▶ Higher-order tensors are denoted by boldface Euler script letters, e.g. A.
- ightharpoonup Element (i, j, k, ...) of a tensor \mathcal{A} are denoted by $a_{ijk...}$
- The mth element in a sequence is denoted by a superscript in parentheses, e.g. A^(m) denotes the mth matrix in a sequence.
- Subarrays of a tensor are formed when a subset of the indices of the elements of a tensor are fixed.
- Fibers are the higher-order analogue of matrix rows and columns, defined by fixing every index but one.
- Slices are 2-dimensional sections of a tensor, defined by fixing all but 2 indices. For instance, the horizontal, lateral, and frontal slices of a third-order tensor \mathcal{A} are denoted by $\mathbf{A}_{i::}$, $\mathbf{A}_{::}$, $\mathbf{A}_{:::}$ (or more compactly \mathbf{A}_i , \mathbf{A}_j , & \mathbf{A}_k) respectively.

Notation & preliminaries

Notation & preliminaries

- ▶ The notation conforms to [7] which is the main reference for this material.
- ▶ Higher-order tensors are denoted by boldface Euler script letters, e.g. A.
- ightharpoonup Element (i, j, k, ...) of a tensor \mathcal{A} are denoted by $a_{ijk...}$
- The mth element in a sequence is denoted by a superscript in parentheses, e.g. A^(m) denotes the mth matrix in a sequence.
- Subarrays of a tensor are formed when a subset of the indices of the elements of a tensor are fixed.
- Fibers are the higher-order analogue of matrix rows and columns, defined by fixing every index but one.
- ▶ Slices are 2-dimensional sections of a tensor, defined by fixing all but 2 indices. For instance, the horizontal, lateral, and frontal slices of a third-order tensor \mathcal{A} are denoted by $\mathbf{A}_{i::}$, $\mathbf{A}_{:j:}$, & $\mathbf{A}_{::k}$ (or more compactly \mathbf{A}_i , \mathbf{A}_j , & \mathbf{A}_k) respectively.

Curse of dimensionality

Storage of an order-m tensor with mode sizes p requires p^m elements.

o Tensors are linear vector spaces.

Definition (Norm)

The **norm** of a tensor $\mathcal{A} \in \mathbb{R}^{p_1 \times p_2 \times \cdots \times p_k}$ is given by

$$\|\mathbf{A}\| = \sqrt{\sum_{i_1=1}^{p_1} \sum_{i_2=1}^{p_2} \cdots \sum_{i_k=1}^{p_k} a_{i_1 i_2 \dots i_k}^2}$$

o This is the analogue to the matrix Frobenius norm.

Definition (Inner product)

The inner product of two same-sized tensors $\mathcal{X}, \mathcal{Y} \in \mathbb{R}^{p_1 \times p_2 \times \cdots \times p_k}$ is given by

$$\langle \mathbf{\mathcal{X}}, \mathbf{\mathcal{Y}} \rangle = \sum_{i_1=1}^{p_1} \sum_{i_2=1}^{p_2} \cdots \sum_{i_k=1}^{p_k} x_{i_1 i_2 \dots i_k} y_{i_1 i_2 \dots i_k}$$

 \circ It follows immediately that $\langle \mathcal{A}, \mathcal{A} \rangle = ||\mathcal{A}||$.

Rank-one tensors

A k-way tensor $\mathcal{A} \in \mathbb{R}^{p_1 \times p_2 \times \cdots \times p_k}$ is **rank-one** if it can be written as the *outer product* of k vectors, i.e.

$$\mathbf{A} = \mathbf{v}^{(1)} \circ \mathbf{v}^{(2)} \circ \cdots \circ \mathbf{v}^{(k)}$$

where "o" represents the vector outer product.

▶ Each element of the tensor is the product of the corresponding vector elements:

$$x_{i_1 i_2 \cdots i_k} = v_{i_1}^{(1)} v_{i_2}^{(2)} \cdots v_{i_k}^{(k)} \quad \forall 1 \le i_n \le p_n.$$

Rank-one tensors

A k-way tensor $A \in \mathbb{R}^{p_1 \times p_2 \times \cdots \times p_k}$ is rank-one if it can be written as the *outer product* of k vectors, i.e.

$$\mathbf{A} = \mathbf{v}^{(1)} \circ \mathbf{v}^{(2)} \circ \cdots \circ \mathbf{v}^{(k)}$$

where "o" represents the vector outer product.

▶ Each element of the tensor is the product of the corresponding vector elements:

$$x_{i_1 i_2 \cdots i_k} = v_{i_1}^{(1)} v_{i_2}^{(2)} \cdots v_{i_k}^{(k)} \quad \forall 1 \le i_n \le p_n.$$

Definition (Cubical tensors)

A tensor $\mathcal{A} \in \mathbb{R}^{p_1 \times \cdots \times p_k}$ is **cubical** if every mode is same size, i.e. $p_1 = \cdots = p_k = p$; as a shorthand an order-k cubical tensors is denoted as $\mathbf{A} \in \otimes^k \mathbb{R}^p$.

Definition (Symmetric tensors)

A cubical tensor $\mathbf{A} \in \otimes^k \mathbb{R}^p$ is symmetric (also referred to as super-symmetric) if its k-way representations are invariant to permutations of the array indices: i.e. for all indices $i_i, i_2, \ldots, i_k \in [p]$ and any permutation π on k:

$$a_{i_1 i_2 \dots i_k} = a_{i_{\pi(1)} i_{\pi(2)} \dots i_{\pi(k)}}.$$

Why tensors are important?

Multivariate functions are related to multidimensional arrays or tensors:

Take a function $f(\mathbf{x}_1,\ldots,\mathbf{x}_p)$; take a tensor-product grid and get a **tensor**, i.e.

$$a_{i_1 i_2 \dots i_p} = f\left(\mathbf{x}_1(i_1), \dots, \mathbf{x}_p(i_p)\right)$$

Why tensors are important?

Multivariate functions are related to multidimensional arrays or tensors:

Take a function $f(\mathbf{x}_1,\ldots,\mathbf{x}_p)$; take a tensor-product grid and get a **tensor**, i.e.

$$a_{i_1 i_2 \dots i_p} = f\left(\mathbf{x}_1(i_1), \dots, \mathbf{x}_p(i_p)\right)$$

Where does tensors come from?

- ightharpoonup n-th derivative of a multivariate function $f\left(x_1,\ldots,x_p
 ight)$, i.e. $abla^n f\left(x_1,\ldots,x_p
 ight)$
- p-dimensional PDE: $\Delta u = f, \ u = u\left(\mathbf{x}_1, \dots, \mathbf{x}_p\right)$
- Data (images, video, hyperspectral images, etc)
- Latent variable models, joint probability distributions
- Many others

Tensor decomposition

Definition (Tensor decomposition [7])

Tensor decomposition refers to the factorization of a tensor into a finite sum of component rank-one tensors.

This is the analogue of the SVD for matrices and is also known as parallel factors and canonical decompositions.

Tensor decomposition

Definition (Tensor decomposition [7])

Tensor decomposition refers to the factorization of a tensor into a finite sum of component rank-one tensors.

This is the analogue of the SVD for matrices and is also known as parallel factors and canonical decompositions.

Example

Given a order-3 tensor $\mathcal{A} \in \mathbb{R}^{p_1 \times p_2 \times p_3}$, it's decomposition attempts to express it as

$$\mathcal{A} pprox \sum_{r=1}^{R} \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r,$$

where R>0 is integer and for $r=1,\ldots,R,\ \mathbf{x}_r\in\mathbb{R}^{p_1},\ \mathbf{y}_r\in\mathbb{R}^{p_2},$ and $\mathbf{z}_r\in\mathbb{R}^{p_3}.$ Elementwise, this decomposition can be written as

$$a_{ijk} \approx \sum_{r=1}^{R} x_{ir} y_{jr} z_{kr}$$
 for $i = 1, \dots, p_1, \ j = 1, \dots, p_2, \ k = 1, \dots, p_3.$

Tensor decomposition contd.

Definition (Factor matrices)

Given a decomposition $\mathcal{A} \approx \sum_{r=1}^{R} \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r$, the factor matrices refers to the combination of the vectors from the rank-one components, i.e. $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_R]$ and similarly for \mathbf{Y} and \mathbf{Z} .

▶ Thus tensor decomposition can be concisely written as

$$\mathcal{A} pprox [[\mathbf{X}, \mathbf{Y}, \mathbf{Z}]] \equiv \sum_{r=1}^R \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r.$$

If we assume that the columns of X, Y, and Z are normalized with the weights absorbed in a vector λ , then the tensor decomposition can further be expressed as

$$oldsymbol{\mathcal{A}} = [[oldsymbol{\lambda}; \mathbf{X}, \mathbf{Y}, \mathbf{Z}]] \equiv \sum_{r=1}^R \lambda_r \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r.$$

Tensor rank

Definition (Tensor rank)

The rank of a tensor $\mathcal A$ denoted rank($\mathcal A$) is the smallest number of rank-one tensors that generate $\mathcal A$ as their sum.

This is the smallest number of components in an exact tensor decomposition where "exact" means the decomposition holds with equality:

$$oldsymbol{\mathcal{A}} = [[\mathbf{X}, \mathbf{Y}, \mathbf{Z}]] \equiv \sum_{r=1}^R \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r.$$

- An exact tensor decomposition with $R = \operatorname{rank}(\mathcal{A})$ is called rank decomposition.
- This is the exact analogue of the definition of a matrix rank but the properties of a matrix and a tensor ranks are quite different.

Tensors rank contd.

Tensor rank approximation: caveat!

Not much is known about the generalizability of matrix notions to tensors particularly rank approximation.

- ► The equivalence of the Eckart-Young-Mirsky theorem for rank-k approximation of matrices does not exist for tensors.
 - 1. For instance, summing k of the factors of a third-order tensor of rank R does not necessarily yield a best rank-k approximation.
 - 2. Kolda [6] gave an example where the best rank-k approximation of a tensor is **not** a factor in the best rank-2 approximation.
- ▶ The notion of tensor (symmetric) rank is considerably more delicate than matrix (symmetric) rank. For instance:
 - 1. Not clear a priori that the symmetric rank should even be finite [3].
 - 2. Removal of the best rank-1 approximation of a general tensor may increase the tensor rank of the residual [9].
- ▶ It is NP-hard to compute the rank of a tensor in general; only approximations of (super) symmetric tensors possible [1].

* Tensors as multilinear maps

Just as a matrix can be pre- & post-multiplied by a pair of matrices, an order-k tensor can be multiplied on k-sides by k-matrices.

Definition (Multilinear maps with tensors)

For a set of matrices $\left\{\mathbf{X}_i \in \mathbb{R}^{p \times m_i} \mid i \in [k]\right\}$, the (i_1, i_2, \dots, i_k) -th entry of a k-way array representation of $\mathcal{A}(\mathbf{X}_1, \dots, \mathbf{X}_k) \in \mathbb{R}^{m_1 \times \dots \times m_k}$ is

$$\left[\boldsymbol{\mathcal{A}} \left(\mathbf{X}_1, \dots, \mathbf{X}_k \right) \right]_{i_1 \dots i_k} := \sum_{j_1, \dots, j_k \in [p]} a_{j_1 j_2 \dots j_k} \left[X_1 \right]_{j_1 i_1} \left[X_2 \right]_{j_2 i_2} \dots \left[X_k \right]_{j_k i_k},$$

where $[\mathbf{X}_i]_{jk}$ is the (j,k) entry of a matrix \mathbf{X}_i .

Example

1. If A is a matrix (k=2), then

$$\mathbf{A}(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{X}_1^T \mathbf{A} \mathbf{X}_2$$

2. For a matrix \mathbf{A} and a vector $\mathbf{x} \in \mathbb{R}^p$, we can express $\mathbf{A}\mathbf{x}$ as

$$\mathbf{A}\left(\mathbf{I},\mathbf{x}\right)=\mathbf{A}\mathbf{x}$$

3. With the canonical basis $\left\{\mathbf{e}_{i_1},\mathbf{e}_{i_2},\ldots,\mathbf{e}_{i_k}\right\}$ we have

$$\mathbf{A}\left(\mathbf{e}_{i_1},\mathbf{e}_{i_2},\ldots,\mathbf{e}_{i_k}\right) = A_{i_1,i_2,\ldots,i_k}$$

* Tensor compression and Tucker decomposition

- ► The Tucker decomposition is a form of higher-order PCA.
- ▶ It also goes by many other names, see [7].

Definition (Tucker decomposition [7])

The **Tucker decomposition** decomposes a tensor into a **core tensor** multiplied (or transformed) by a matrix along each mode.

Example

lacktriangle In the case of a third-order tensor $oldsymbol{\mathcal{A}} \in \mathbb{R}^{p_1 imes p_2 imes p_3}$, we have

$$\mathcal{A} = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \sum_{r_1=3}^{R_3} g_{r_1r_2r_3} \mathbf{x}_{r_1} \circ \mathbf{y}_{r_2} \circ \mathbf{z}_{r_3} = [[\mathcal{G}; \mathbf{X}, \mathbf{Y}, \mathbf{Z}]].$$

- ▶ The matrices $\mathbf{X} \in \mathbb{R}^{p_1 \times R_1}$, $\mathbf{Y} \in \mathbb{R}^{p_2 \times R_2}$, and $\mathbf{Z} \in \mathbb{R}^{p_3 \times R_3}$ are the factor matrices and are the principal components in each mode.
- ▶ The tensor $\mathcal{G} \in \mathbb{R}^{R_1 \times R_2 \times R_3}$ is the core tensor and its entries show the level of interaction between different components.

* Banach's results for tensors

- ▶ Banach proved that the maximal overlap between a symmetric tensor and a rank-1 tensor is attained at a symmetric rank-1 tensor.
- ▶ Unfortunately, this–seemingly trivial result—is not obvious. That is, if $\mathbf{U} \in \operatorname{Sym}^k(\mathbb{C}^p)$ is a k-index totally symmetric vector with d dimensions per index, then

$$\max \arg_{\mathbf{X} = \mathbf{x}_1 \circ \dots \circ \mathbf{x}_k, \|\mathbf{x}_i\|_2 = 1} |\langle \mathbf{X}, \mathbf{U} \rangle|^2$$

fulfills
$$\mathbf{x}_1 = \ldots = \mathbf{x}_n$$
.

References |

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky.
 Tensor decompositions for learning latent variable models.

```
Journal of machine learning research, 15:2773–2832, 2014. (Cited on page 72.)
```

[2] Waheed U Bajwa, Jarvis D Haupt, Gil M Raz, Stephen J Wright, and Robert D Nowak.

Toeplitz-structured compressed sensing matrices.

```
In IEEE/SP Workshop Stat. Sig. Proc., pages 294–298. IEEE, 2007. (Cited on page 25.)
```

[3] Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain.

Symmetric tensors and symmetric tensor rank.

```
SIAM Journal on Matrix Analysis and Applications, 30(3):1254–1279, 2008.
```

(Cited on page 72.)

[4] Simon Foucart and Holger Rauhut.

A mathematical introduction to compressive sensing, volume 1.

```
Birkhäuser Basel, 2013. (Cited on pages 24 and 46.)
```

[5] Gene H Golub and Charles F Van Loan.

Matrix computations, volume 3,

```
JHU Press, 2012.
```

(Cited on page 33.)

References II

[6] Tamara G Kolda.

Orthogonal tensor decompositions.

```
SIAM Journal on Matrix Anal. and Apps., 23(1):243–255, 2001. (Cited on page 72.)
```

[7] Tamara G Kolda and Brett W Bader.

Tensor decompositions and applications.

```
\begin{array}{l} \textit{SIAM Rev.}, \ 51(3); 455-500, \ 2009. \\ (\textit{Cited on pages 61}, \ 62, \ 68, \ 69, \ \text{and} \ 74.) \end{array}
```

[8] Holger Rauhut, Justin Romberg, and Joel A Tropp.

Restricted isometries for partial random circulant matrices.

```
App. Comp. Harmon. Anal., 32(2):242–254, 2012. (Cited on page 25.)
```

[9] Alwin Stegeman and Pierre Comon.

Subtracting a best rank-1 approximation may increase tensor rank.

```
Linear Algebra and its Applications, 433(7):1276–1300, 2010. (Cited on page 72.)
```

[10] Gilbert Strang.

Applied linear algebra, 1976.

(Cited on page 34.)

References III

[11] Joel A. Tropp.

Column subset selection, matrix factorization, and eigenvalue optimization.

In *Proc. ACM-SIAM Symp. Discrete Algorithms*, 2009. (Cited on page 46.)

[12] Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher.

Scalable semidefinite programming.

SIAM Journal on Mathematics of Data Science, 3(1):171–200, 2021.

(Cited on page 37.)